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Abstract 

A reliability analysis of suspension bridges against buffeting failure due to gustiness of 

wind velocity is carried out using the concept of PRA (probabilistic risk analysis) procedure. 

For this purpose, the bending stresses at the critical nodes of the bridge deck are obtained for 

buffeting forces using a spectral analysis technique and a finite element approach. For the 

purpose of reliability analysis, uncertainties are considered as those arising due to variation of 

stiffness and mass properties of the bridge, damping, mathematical modeling, flutter 

derivatives and due to ductility and damage concentration effects. These uncertainties are 

incorporated by a set of multiplying factors in the limit state function. All multiplying factors 

are assumed to be independent log-normally distributed random variables. An extensive 

parametric study is conducted to show the effect of some important parameters on the 

reliability estimate. The results of the study show that ductility of the system and the 

structural damping have a significant effect on the reliability against buffeting failure. 

 

Keywords: Reliability analysis; Buffeting failure; PRA procedure; Suspension bridges; 

Ductility; Damage concentration. 

 

1. Introduction 

Earlier studies on wind induced vibration of suspension and cable stayed bridges relate to 

the determination of the flutter wind speed and buffeting response of the bridge deck [1-9]. A 

few of these studies also deal with the stability analysis of suspension bridges to wind 

induced excitations [10]. In recent years, Jain et al. [11] carried out a comprehensive study on 

the coupled flutter and buffeting analysis of long-span bridges by continuum approach using 

spectral analysis technique. The same concept was extended by Katsuchi et al. [12] to obtain 

the multimode coupled flutter and buffeting analysis of the Akashi-kaikyo Bridge in Japan. 

Compared to the dynamic response analysis of suspension bridges, reliability analysis of 

suspension bridges against dynamic phenomena is relatively less. Malla [13] presented a 

reliability analysis of cable-stayed bridges for seismic forces. Madsen and Rosenthal [14] 
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carried out a study on the reliability analysis of the East Bridge, a suspension bridge with a 

main span of 1624 m, across the Great Belt in Denmark, against flutter wind speed. The study 

was done on the basis of measuring the critical wind speed values on a scale model in wind 

tunnel tests. Recently, Ge et al. [15] have applied a reliability analysis model to bridge flutter 

under extreme wind. They presented a reliability analysis model, which is formulated as a 

limit state up-crossing problem, and a probability calculation approach to determine the 

probability of bridge flutter due to wind. Authors [16] studied reliability analysis of 

suspension bridges against flutter failure. Not many studies are reported on the reliability of 

suspension bridges against buffeting. Since buffeting response of suspension bridges is one of 

the most important considerations in their design, it is desirable that the reliability of such 

bridges against buffeting failure is investigated thoroughly. 

In this paper, the reliability of the suspension bridges against buffeting failure is presented 

using the concept of PRA (probability risk analysis) procedure and the basic reliability 

analysis method. For the purpose of reliability analysis, uncertainties are considered as those 

arising due to the variations of stiffness and mass properties of the bridge, damping, 

mathematical modeling, flutter derivatives and due to the ductility and damage concentration 

effects. These uncertainties are incorporated by a set of multiplying factors in the limit state 

function. All multiplying factors are assumed to be independent log-normally distributed 

random variables. The storm mean wind speed at the bridge site is assumed to follow type I 

distribution (given by Thom, [17]). A parametric study is conducted to show the effect of 

some important parameters on the reliability estimate. They include ductility of the system, 

threshold level, coefficients of variation of the damping factor, modeling factor, etc. 

 

 

2. Assumptions 

  The following assumptions are made in the analysis: 

1. Bridge deck is considered as a simply supported beam in each span. Therefore, it is 

assumed that bridge deck will fail if only one hinge occurs along any span. 

2. The buffeting response of the bridge is a stationary Gaussian process with zero mean 

value. 

3. In the reliability analysis against buffeting response failure, the probability of 

exceedance of the bending stress (beyond a specified threshold level) at the critical 

nodes along the bridge span, caused by fluctuating component of the wind velocity, 

from a specified threshold level is evaluated. 

4. All stresses in the bridge elements obey the Hooke’s law, and therefore no material 

non-linearity is considered. 

5. The initial dead load is carried by cables without causing any stress in the suspended 

structure. 

6. The cable is assumed to be of a uniform cross section and of a parabolic profile 

under dead load such that the weight of the cable can be assumed to be uniformly 

distributed along the span instead of along the length of the cable.  

7. The hangers (or suspenders) are assumed to be vertical and inextensible, and their 

forces are considered to be distributed loads as if the distance between the 

suspenders is very small. 

8. The original shape of every cross-section of the bridge deck is unaltered during 

vibration although the section may undergo out-of-plane deformation (Warping).  

9. It is assumed that there is no tower resistance to displacement at the tower top and so 

the horizontal components of the cable tension Hw, (due to dead load) and h(t), (due 

to dynamic load) are the same on both sides of the tower. 
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3. Equation of motion 

The buffeting response of suspension bridge is evaluated using finite element method 

(FEM) by coupled multi-mode analysis. For this purpose, the bridge deck is discretized into 

two-dimensional beam elements each consisting of two nodes at its ends. At each node, four 

degrees of freedom, as shown in Figure 1 are considered. The dynamic degrees of freedom 

are taken as the vertical ( V

3

V

1 qandq ) and torsional ( 

31 qandq ) degrees of freedom and 

therefore, the rotational ( V

4

V

2 qandq ) and torsional ( 

42 qandq ) degrees of freedom are 

condensed out from the overall stiffness matrix. 

The wind induced aerodynamic (self-excited and buffeting) forces can be lumped at both 

ends of each element as shown in Figures 2 c and d. The aerodynamic forces per unit length 

of the bridge span (Figures 2 a and b) may be separated into two parts as [11] 

L = Lae + Lb                                         (1a) 

 

 

 
 

 
Figure 1. Suspension Bridge model: (a) schematic view; (b) flexural deformations at the ends of 

bridge deck element; and (c) torsional deformations at the ends of bridge deck element. 
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Figure 2. Aerodynamic forces: a) Distributed vertical load; b) Distributed torsional moment;  

c) Lumped vertical load; d) Lumped torsional moment. 

 

M = Mae + Mb                                                                                (1b) 

where L is the lift force and M is the torsional moment, respectively; and ae refers to 

aeroelastic and b refers to buffeting forces. Detail descriptions of these forces are provided in 

references [18-20].  

The governing equation of motion in the matrix format can be written as 

            bae FF  x   x   x  KCM                                                        (2) 

where [ M] is the lumped mass matrix of size 2n2n; [C] is the structural damping matrix of 

size 2n2n; [K] is the condensed structural stiffness matrix of size 2n2n; and {x} is the (2n 

 1) displacement vector defined as 

   T

212121  ... ,,  ,v ..., v ,v  x
nnn 

                                                         (3) 

in which ii andv   are the vertical and torsional displacement at node i along the bridge span, 

respectively; and n is number of nodes along the bridge span. The condensed stiffness matrix 

[K] is derived from a 4n4n stiffness matrix  K  of the form 

 

















K|

|

|K

K

V

0

0

                                                                   (4) 

in which 
KandK V

 are bending and torsional stiffness matrices respectively, each of size 

2n2n. Elemental bending stiffness (corresponding to the degrees of freedom 
VVVV qandq,q,q 4321 ) and torsional stiffness (corresponding to the degrees of freedom 

4321 qandq,q,q ) matrices are derived from energy principles in which cable/ structure 

strain energies are only considered [21, 22]. 

{F}ae and {F}b are the self-excited and buffeting force vectors, given in references [18, 19].  

Solution of the equation(2) using a standard random vibration spectral analysis in frequency 

domain [23], provides the power spectral density functions of buffeting responses (both 

displacement and bending moment) at the nodes of the bridge. 

 

4. Probabilistic description of wind 

4.1. Probabilistic description of wind gustiness 

In random vibration analysis of the structures due to fluctuating component of wind 

velocity (also called gustiness of the wind), the power spectral density function (PSDF) of the 

gustiness of wind is required as an input. Various empirical models for describing the PSDF 



S. Pourzeynali, T.K. Datta /  Comp. Meth. Civil Eng.  1 (2010) 15-35 

19 

of wind velocity (wind spectra) are available. In the present study the model proposed by 

Simiu and Scanlan [24] is used, which is given in Appendix-I. 

 

4.2. Probabilistic description of storm mean wind speed 

As it would be shown later, the probability of fatigue failure of suspension bridges 

depends on the storm mean wind speed at the site of the bridge. Therefore, for the evaluation 

of the reliability, the distribution of storm mean wind speed is needed. It is assumed that 

storm mean wind speed follows the Type II (Frechet) distribution given by Thom [17] as 

follows 

 
















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expUFu                                                           (5) 
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exp
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                                                       (6) 

in which Fu(U) and fu(U) are the CDF and PDF of the storm mean wind speed U, 

respectively;  is the scale parameter and  is the tail length parameter. 

As well, the effect of Gumbel type I distribution, as the distribution of storm mean wind 

speed, on reliability against buffeting failure is also investigated. The probability density 

(PDF) and distribution (CDF) functions of this distribution can be expressed as follows 

         UuUexpuUexpUfu                      (7) 

       UuUUFu          expexp                             (8) 

The parameters u  (location) and   (dispersion) are given by 



57720.
uUmean                                                  (9) 

2

2
2

6


 U                                                          (10) 

where Umean and U are the mean and standard deviation of the storm mean wind speed U. 

 

5. Reliability analysis 

5.1. Uncertainties considered in the study 

The uncertainties in geometric and material properties of the bridge and the construction 

defects finally lead to uncertainties in the mass, stiffness properties of the bridge. The other 

uncertainties that are considered include uncertainties in mathematical modeling, structural 

damping and flutter derivatives. All these uncertainties affect the dynamic characteristics of 

the bridge and hence, the buffeting response of the bridge. The uncertainties in mass and 

stiffness give rise due to uncertainties in modal characteristic of the bridge and therefore, they 

are incorporated separately by a simulation procedure. The uncertainties arising from 

damping, mathematical modeling and flutter derivatives are considered directly in the 

reliability limit state function. 

5.1.1 Mass and stiffness uncertainties 

The variation in the material and geometric properties of the bridge leading to the 

variations of the mass and stiffness properties of the system is complex and difficult to 

appropriately consider in the reliability analysis. The problem requires the mass and stiffness 

properties of the structure to be modeled as random variables leading to the use of stochastic 

finite element analysis or simulation procedure. In order to keep the present reliability 

analysis procedure simple and to obtain a preliminary estimate of reliability, the variation of 
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the mass and stiffness properties of the bridge are considered by writing these matrices in the 

following form 

 [K]=1[K]                                                      (11) 

[M]=2[M]                                        (12) 

in which [K] and [M] are the basic stiffness and mass matrices of the bridge, respectively, are 

considered as deterministic; 1 and 2 are log-normally distributed random variable factors 

which represent the variability of stiffness and mass matrices. In order to make this variation 

more general, the factor 1 itself can be considered as a combination of three factors i.e., 

1= F1.F2.F3                                                                                             (13) 

in which F1 represents the effect of variability of modulus of elasticity (E) ; F2 represents the 

uncertainty resulting from the variation of shear modulus (G) ; and F3 represents the 

uncertainty resulting from bridge geometry. All these factors are considered as independent 

log-normally distributed random variables with a mean value of unity. The coefficient of 

variation (COV) of 1 can be evaluated as [25] 

   2

3

2

2

2

1

2

1 1111 FFF δδδδ                                          (14) 

where 1 is the COV of the 1, Fi are the COV of the factors Fi (i=1-3). 

Since some of the elements of the stiffness matrix contain the parameter 'E', while other 

elements contain the parameter 'G', the values of F1 and F2 may be considered as 0.5 E and 

0.5 G; E and G are the COV of the parameters E and G, respectively. Thus equation (14) 

can be written as 

      2

3

222

1 15015011 FGE    ..                                      (15) 

In a similar manner, 2 can be calculated, assuming that 2 =  F3 in which  represents 

the variation of mass density of the material. 

Since 21  and  are log-normally distributed random variables, mean values of these 

random variables can be related to their standard deviations. With the standard deviation and 

mean values of 21 and   as known, random values of 21 and   can be artificially 

generated, which are used in section 5.2 for reliability analysis against buffeting failure. 

 

5.1.2. Damping, modeling, and flutter derivatives uncertainties 

Buffeting response of the bridge deck, which are calculated according to the procedures 

given in previous sections, as would be seen later, are multiplied by three factors F4, F5, and 

F6, in order to take in to account the uncertainties due to damping, modeling and flutter 

derivatives. These uncertainty coefficients are again considered as independent log-normally 

distributed random variables, with mean value of unity. 

There are very few data available from the measured structural damping of suspension 

bridges, which show the damping variability. According to Davenport [26], the structural 

damping of the long span suspension bridges can be expressed as 

E
n

c
                                                                      (16) 

where  is the torsional mode damping ratio to critical; n is structural frequency (Hz); c is 

the proportionality coefficient; E is a log-normally distributed random factor with mean value 

of unity and coefficient of variation to be 0.40. Since the buffeting response of suspension 

bridges change with the damping ratio , the effect of the C.O.V. of the factor F4 (F4) on the 

buffeting response is investigated with the upper limit of F4 as 0.40. 

The actual bridge structure is always more complicated than its simplified model which is 

considered for analysis. For example, the three-span suspension bridge is considered here as a 
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three-span simply supported beam. Also, some other assumptions and simplifications are 

made during the study, which introduce some uncertainties in the evaluation of the buffeting 

response. These uncertainties are incorporated in the analysis by considering a C.O.V. of the 

factor F5 (F5) as 0.10. 

Factor F6 accounts for the uncertainties arising from the insufficient knowledge of flutter 

derivatives. In this study, flutter derivatives are estimated from experimentally given curves 

by Scanlan and Tomko [27], which were measured under zero angle of attack and low speed 

flow (laminar flow). Thus, the effects of actual turbulence of wind flow and wind direction 

are not considered in the analysis. In addition, experimental error and curve fitting techniques 

introduce extra uncertainties for the values of flutter derivatives used in the analysis. 

According to a study [24] disparity between the results of flutter derivatives obtained under 

turbulent and laminar conditions, especially for *

2A  [18-20], for reduced velocities 

12)nB/(U  [18-20] is of the order of 15%. Keeping the above in view, the COV for factor 

F6 (F6) is taken as 0.20. 

 

5.2. Reliability analysis against buffeting response failure 

As was explained in previous sections, the buffeting response of suspension bridges is 

calculated using the spectral analysis method in frequency domain. The resulting responses 

may be affected by the associated errors in evaluating the material properties, damping of the 

system, modeling of the problem and flutter derivatives. Thus, the uncertainties should be 

properly considered in the analysis. In the reliability analysis, the failure of the structure is 

defined as 

  0 SRXg                                             (17) 

In general, the variables R and S are called resistance and load effect of the system and are 

functions of a number of basic random variables. In this part of study for evaluating the 

reliability against buffeting failure, S may be written as 

S=(k x) Fm. F4.F5.F6                                                      (18) 

where the factors F4, F5 and F6 are defined in previous sections; Fm is an independent log-

normally distributed random variable which is considered to incorporate the material 

uncertainty into the buffeting responses; x is the RMS value of the bending stress at the 

critical nodes of the bridge (Figure 3) for which the reliability analysis is being performed 

and is considered as deterministic; and k is the peak factor of the bending stress given as [28] 

 
 2
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2

57720
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 k                                                     (19) 
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

dnnS

dnnSn

                                                       (20) 

in which n is the natural frequency (Hz); S(n) is the PSDF of the stress; and T is duration of 

the process. 
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Figure 3. RMS values of the bending moment along the bridge span: a) Thomas Bridge;  

b) Golden Gate Bridge. 

 

As was explained in the previous sections, the material uncertainties were incorporated 

using the random coefficients 1 and 2 and by using a simulation procedure. In the buffeting 

reliability analysis, the long hand simulation to obtain the mean and standard deviation of the 

buffeting response is computationally very intensive. Therefore, the material uncertainty in 

the buffeting response is incorporated by considering an additional random variable factor Fm 

in equation (18). The median value of Fm is taken as unity and the logarithmic standard 

deviation (lnFm) can be calculated using the ratio between 84
th

 percentile non-exceedance 

and the median response as given by Takeda et al. [29] 

50

84




 lnFmln                                                                       (21) 

in which 50 is the bending stress (RMS value) corresponding to the median values of 

coefficients 1 and 2; and 84 also is the bending stress corresponding to the median +1 of 

the coefficients 1 and 2. x in equation (18) is obtained for the median values of 1 and 2. 

Note that the bending stresses are obtained using the [K] and [M] matrices defined in 

equations (11) and (12), in which the appropriate values of 1 and 2 as described above are 

used. 

Further, the resistance (R) of the limit state equation (equation (17)), takes the form 

R=C.F7.F8                                  (22) 

where C is the capacity of the structure which is considered to resist the fluctuating 

component of the bending stress, and is assumed to be a percentage of yield stress y. F7 is 

(a) 

(b) 
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the ductility factor, which represents inelastic energy absorption, and its median value can be 

calculated using Numark's formula, 12  , and is reduced to about 60% of the formula [29] 

in which  is the ductility factor. The concept of factor F7 is useful for single-degree-of-

freedom systems, but in order to represent the damage concentration effect of MDOF 

systems, the factor F8 is used. Median value of F8, as shown by Takeda et al. [29], can vary 

from 0.75 to 2. 

In equations (18) and (22), all the random variables are assumed to be independent log-

normally distributed. Therefore, the variables R and S would be log-normal, and for 

calculating the probability of failure, Pf, first order and second moment (FOSM) method can 

be used. The procedure is given in the following: 

           Pf = P (g(X) < 0) 

               = P (R< S) 

       = P (R/S < 1)                                                (23) 

let      Z = R/S                                                                           (24) 

Since R and S are independent and log-normally distributed, then Z also is log-normally 

distributed and its logarithmic mean and standard deviation are given as 

  









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S
~
R
~

lnZ
~

lnZln                                                         (25) 

22

SlnRlnZln                                               (26) 

Since 600127 .F
~

   as described previously,  
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  654                                                                 (28) 
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22 11111 FFFFmS                                                                  (31) 

in which over hat denotes the median value; and   is the ratio of capacity C to the yield 

stress y. The probability of failure Pf for a single storm may be expressed as 

 





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

 



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f ZlnPP






0
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                                      (32) 

where  is standard normal distribution function and 

Zln

Zln




                         (33) 

As the buffeting response of the bridge depends on the mean wind velocity during the 

storm, Pf can be weighted by the annual probability density function of the storm mean wind 

velocity fu(U), given by Thom [17] in the range of interest as 

  
U

ufE dUUfPP                                              (34) 

Thus, if the number of storms in one year is assumed to be n , the probability of failure during 

m  years of lifetime of the bridge can be expressed as 

       
  nm

Enm PP  11                                          (35) 
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6. Numerical studies 

As numerical examples, the Thomas Suspension Bridge located between San Pedro and 

Terminal Island in Los Angeles County, California; and the Golden Gate Suspension Bridge 

located in San Francisco, California, are chosen. For these three-span suspension bridges, the 

structural data are taken from the literature [21, 22, 27]. Some of the structural data are given 

in the following: 

For Thomas Bridge: (1) one center span l2=460 m; (2) two side spans l1=l3=155m; (3) 

dead load of the bridge w=52438.020 N/(m-cable); (4) cross-sectional area of one cable, 

Ac=0.0780 m
2
; (5) moment of inertia of bridge deck for center span I2=0.7258 m

4
, and for 

side spans I1=I3=0.7498 m
4
. 

For Golden Gate Bridge: (1) one center span l2=1280.6 m; (2) two side spans 

l1=l3=342.9m; (3) dead load of the bridge for center span w2=166982.3 N/(m-cable), and for 

side spans w1=w3=168440.7N/(m-cable); (4) cross-sectional area of one cable, Ac=0.5367 

m
2
; (5) moment of inertia of bridge deck for center span I2=5.4346 m

4
, and for side spans 

I1=I3=3.4285 m
4
. 

The results of the free vibration analyses for both bridges which provide the modal 

properties of the bridges are given in references [16, 18].  

As mentioned before, the bending stresses are calculated at the critical nodes 

corresponding to the median values of the coefficients 1 and 2 (50) and median + 1 of 

these coefficients (84) for both bridges. Node 5 and node 22 (Figure 3) are considered as the 

critical nodes for Thomas and Golden Gate Bridges, respectively, for which the values of Fm 

are evaluated as 7.4% and 26.5%. In order to obtain the probability of failure due to bending 

stress, the mean value of factors F4, F5 and F6 are taken as unity and the coefficients of 

variation F4, F5 and F6 are taken as 0.40, 0.10 and 0.20, respectively. The range of mean 

wind speed is considered from 15 to 55 m/sec and 10 to 32 m/sec for Thomas and Golden 

Gate Bridges, respectively. Note that for suspension bridges the range of mean wind speed is 

limited by the flutter speed. In this study, the flutter speed for Thomas Bridge is considered 

about 58.22 m/sec (obtained from another study by authors), and that of the Golden Gate 

Bridge about 33.39 m/sec. By taking the above in view, the parameters of the wind 

distribution (given by Thom [17]) are chosen as =5 and =20 for Thomas Bridge, and =7 

and =18 for Golden Gate Bridge. The ductility factor  is taken as 4 and the median value of 

factor F8 as 1.25. The yield stress for the steel material of the bridge deck (y) is assumed to 

be about 2.4  10
8
 N/m

2
. 

The probability of failure (Pf) due to bending stress is calculated using the FOSM method 

(equation (32)) by assuming that all random variables are log-normally distributed. Pf is 

calculated for different values of the mean wind speed. The capacity C, to resist bending 

stress at the critical nodes is taken about 20%, 33% and 50% of y. The results are shown in 

the Figures 4a and 4b for Thomas and Golden Gate Bridges, respectively. It can be seen from 

the figures that the capacity C has a significant effect on the reliability against buffeting 

failure. As C increases, reliability also rapidly increases. Further, reliability decreases with 

the increase in the value of the mean wind speed U. 

The variation of reliability versus mean wind speed U at the critical node of the center 

span for Thomas Bridge (node 16) and at the critical node of the side span for Golden Gate 

Bridge (node 5) is shown in Figures 5a and 5b, respectively. For these nodes also, reliability 

varies in the same manner as that of the other critical nodes. 

The effect of some important parameters such as wind distribution, ductility factor, 

damping ratio, etc. on the reliability against buffeting failure is investigated through a 

parametric study. The results are given in the following. 



S. Pourzeynali, T.K. Datta /  Comp. Meth. Civil Eng.  1 (2010) 15-35 

25 

 
 

 

Figure 4. Effect of median value of capacity on reliability against buffeting failure, a) at node 5 for Thomas 

Bridge (=4; median F8=1.25); b) at node 22 for Golden Gate Bridge (=4; median F8=1.25). 

 

 
 

 

(a) 

(b) 

(a) 
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Figure 5.  Effect of median value of capacity on reliability against buffeting failure, a) at node 16 for 

Thomas Bridge (=4, median F8=1.25); b) at node 5 Golden Gate Bridge (=4, median F8=1.25). 

 

 

Figure 6. Variation of Pf with exceedance probability of U (Thomas Bridge; =4, median F8=1.25, 

Umean=35, Ud=50m/sec). 

 

6.1. Effect of the wind distribution on Pf 

Since the buffeting response of the suspension bridges depends on the storm mean wind 

speed U at the bridge site, the probability of failure due to buffeting response, Pf, depends on 

the probability of U exceeding a certain value. This dependence is shown in Figures 6 to 11. 

Figures 6 and 7 show the variation of [1-Fu(U)] with Pf for the Thomas Suspension Bridge 

by assuming the Gumbel type I distribution and type II distribution [17] for the storm mean 

wind speed U, respectively. The figures are plotted for capacity C considered as 20%, 33% 

and 50% of yield stress y. It is seen from the figures that Pf increases with the decrease in 

the value of the probability of exceedance. In addition, for a specified level of exceedance, 

the value of Pf, which is obtained from Gumbel type I distribution is more than that of the 

type II distribution. Further, Pf increases as capacity decreases. 

Figures 8 and 9 show the same curves for Golden Gate Bridge. For this bridge, Gumbel 

type I distribution shows Pf to be less than that for the type II distribution. Further, Pf 

increases with the decrease in the value of probability of exceedance.  

Figures 10 and 11 show the comparison between the results of Pf obtained by assuming 

Gumbel type I distribution and type II distribution for Thomas and Golden Gate Bridge, 

respectively. It can be seen from the figures that for Golden Gate Bridge type II distribution 

(b) 
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shows Pf more than the Gumbel distribution, whereas for Thomas Bridge, the Gumbel type I 

distribution shows Pf more than that of type II (when probability of exceedance is more than 

20%). 

+ 

 

 

 

 

 

 

 

 

Figure 7. Variation of Pf with exceedance probability of U (Thomas Bridge; =4, median F8=1.25, 

=5, =20). 

 

Figure 8. Variation of Pf with exceedance probability of U (Golden Gate Bridge; =4, median 

F8=1.25; Umean=20, Ud=30m/sec). 

 

 

Figure 9. Variation of Pf with exceedance probability of U (Golden Gate Bridge; =4, median 

F8=1.25;=7, =18). 
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Figure 10. Comparison between Pf obtained by assuming wind distributions as Gumbel Type I and 

Type II (Thomas Bridge; C=33% of y; =5, =20; Umean=35, Ud=50m/sec; =4; median F8=1.25). 

 

 

Figure 11. Comparison between Pf obtained by assuming wind distributions as Gumbel Type I and 

Type II (Golden Gate Bridge; C=33% of y; =7, =18; Umean=20, Ud=30m/sec; =4; median 

F8=1.25). 

 

6.2. Effect of ductility factor on reliability against buffeting failure 

Effect of ductility factor () on reliability against buffeting failure is shown in Figures 12 

and 13 for Thomas and Golden Gate Bridges, respectively. In the figures, reliability is plotted 

versus storm mean wind speed U. In order to evaluate reliability, capacity C is taken to be 

50% of y and median value of the factor F8 is considered as 1.25. It can be seen from the 

figures, that  has a significant effect on reliability. Reliability increases significantly with 

the increase in the value of ductility of the system. Further, it is seen from the figures that 

reliability rapidly decreases with the increase in the mean wind speed at the bridge site. 
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Figure 12. Effect of ductility on reliability against buffeting failure (Thomas Bridge; C=50% of y; 

median F8=1.25). 

 

 

Figure 13. Effect of ductility on reliability against buffeting failure (Golden Gate Bridge; C=50% of 

y; median F8=1.25). 

 

6.3. Effect of damage concentration factor on reliability against buffeting failure 

Effect of the damage concentration factor on reliability of the Thomas and Golden Gate 

Bridge is shown in Figures 14 and 15, respectively. For evaluating the reliability, capacity of 

the system is taken about 50% of the yield stress y and ductility of the system is considered 

as =4. Figures are plotted for three values of the median of the damage concentration factor 

F8 about 0.75, 1.0 and 2.0. As it is seen from the figures, reliability significantly increases 

with the increase in the median value of F8. When 8F  increases from 0.75 to 2.0, for mean 

wind speed U=45 m/sec, reliability increases from 0.31224 to 0.93857 for Thomas Bridge. 
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Figure 14. Effect of damage concentration factor on reliability against buffeting failure (Thomas 

Bridge; C=50% of y, =4). 
 

 

Figure 15. Effect of damage concentration factor on Reliability against buffeting failure (Golden Gate 

Bridge; C=50% of y, =4). 

 

6.4. Effect of damping ratio on reliability against buffeting failure 

Figures 16 and 17 show the effect of structural modal damping ratio on reliability against 

buffeting failure for Thomas and Golden Gate Bridges, respectively. Figures are plotted for 

damping ratios of 1%, 3% and 5%. Further, capacity C is considered as 50% of y, = 4 and 

F
~

8 = 1.25. It can be seen from the figures that reliability against bending stress at the critical 

node of the bridge deck significantly increases with the increase in the value of damping 

ratio.  
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Figure 16. mEffect of damping ratio on reliability against buffeting failure (Thomas Bridge; C=50% 

of y, =4, median F8=1.25). 

 

 

Figure 17. Effect of damping ratio on reliability against buffeting failure (Golden Gate Bridge; 

C=50% of y, =4, median F8=1.25). 

 

6.5. Effect of number of storms on reliability against buffeting failure 

In previous sections, reliability against buffeting failure due to bending stress is evaluated 

for a single storm having a certain mean wind speed U, and reliability is plotted versus U in 

the velocity range of interest for both bridges.  

Since, number of storms ( n ) in a year has a significant effect on Pf (equation (35)), the 

variation of reliability versus n  is shown in Figures 18 and 19 for Thomas and Golden Gate 

Bridge, respectively. Reliability is evaluated at the critical nodes of the middle span and side 

span for both bridges. Figures show that for Thomas Bridge reliability changes nonlinearly 

with the number of storms ( n ) in a year, whereas this variation almost remains linear for the 

Golden Gate Bridge. 
 



S. Pourzeynali, T.K. Datta /  Comp. Meth. Civil Eng.  1 (2010) 15-35 

32 

 

Figure 18. Effect of annual number of storms on reliability against buffeting failure (Thomas Bridge; 

C=50% of y, =4, median F8=1.25). 

 

Figure 19. Effect of annual number of storms on reliability against buffeting failure (Golden Gate 

Bridge; C=50% of y, =4, median F8=1.25). 

 

 

7. Conclusions 

The reliability of suspension bridges against buffeting failure is investigated. The 

reliability is estimated for uncertainties in stiffness and mass properties, modeling, damping 

and flutter derivatives of the deck cross section of the bridge. All uncertainty factors are 

assumed to be log-normally distributed random variables. The storm mean wind speed at the 

bridge site is assumed to follow Gumbel type I distribution or type II distribution given by 

Thom [17]. Using the concept of PRA procedure and the basic theory of reliability analysis, 

the results of the study on the Vincent-Thomas and Golden Gate Suspension Bridges show 

that: 

(i) Probability of failure of the suspension bridges against bending stress significantly 

decreases with the increase in the value of the capacity of the system. 
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(ii) Ductility and damage concentration factors for the bridges have significant effect on 

reliability against buffeting failure of the bridges. 

(iii) Structural damping significantly influences the reliability against buffeting failure of 

the bridges. 

(iv) Number of storms ( n ) in a year significantly effects the reliability against buffeting 

failure of the bridges. 
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Appendix-I 

The auto-power spectra of the wind velocity component u and w, which used in this study, 

are as follow [24] 

 

              

 3

5

2

501

200

fU

uz
Suu



   ,     
















 

3

5

2

101

363

fU

uz.
Sww   ,    

U

zn
f                              (I-1)  

where z is the height of bridge deck above the ground; u  is the friction velocity which is a 

function of surface roughness. In addition, the following empirical relationship is given for 

co-spectrum, Cuw, [11] 
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For quadrature spectrum, Quw, no relationship has yet been given [11], so it is assumed to 

be negligible.  

The spanwise cross-spectral densities of the wind component can be written in 

conventional form as [24] 
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where S(k) is ether Suu(k), Sww(k), or Suw(k); xA and xB are the x coordinates of the points along 

the bridge span at which the cross-spectrum is evaluated; c is the exponential decay 

coefficient for which the range is given by Jain et al. [11] as 

 

 168  c                                                                 (I-4) 

As well, the uw-wise spectrum of the wind velocity can be expressed as 
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in which co-spectrum and quadrature spectrum are given before.  


