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Abstract 

Seismic waves are filtered as they pass through soil layers, from bedrock to surface. Frequencies 
and amplitudes of the response wave are affected due to this filtration effect and this will result in 
different ground motion characteristics. Therefore, it is important to consider the impact of the soil 
properties on the evaluation of earthquake ground motions for the design of structures. Soil properties 
in a heterogeneous soil layer are affected by a series of uncertainties. Inherent variability of shear 
modulus contributing most to the overall uncertainty is described and modeled in this paper using 
deterministic and stochastic field representations. This paper highlights the importance of the effect of 
the stochastic components of the heterogeneity of shear modulus on response behavior of natural 
alluvial deposits in comparison to the deterministic consideration. The results emphasize that 
stochastic heterogeneity has significant effects in dynamic properties of natural alluvial deposits and 
its negligence would result in an over estimation of the fundamental frequency of spatially variable 
alluvial deposits. 
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1. Introduction 
 

Geotechnical earthquake engineering deals with many kinds of uncertainties which should 
be considered in the computation of site earthquake response. These uncertainties are related 
mainly to earthquake input which is caused by earthquake source mechanism, transmission 
path, and also to, soil properties which vary from place to place within deposits [1]. The 
uncertainty in field data is introduced by the inherent soil heterogeneity, namely spatial 
variability of soil properties within so-called homogeneous soil layers. 
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A study of horizontal ground acceleration response spectra was published by Seed et al. 
[2]. This investigation included 104 accelerograms from sites in the United States and other 
countries where the soil conditions were known in some detail. Figure 1 shows the response 
spectra for buildings normalized with respect to the peak ground acceleration. It is indicated 
that tall buildings founded on deep or soft alluvium may be subject to seismic forces several 
times larger than similar buildings on rock, if the peak ground acceleration is the same in 
both cases. Therefore, observed damage patterns and the statistical analysis of recorded 
motions suggest that both stiffness and depth of soil stratum affecting the natural frequency 
should be considered in the seismic design of structures, especially in the long-period range. 

 

 
Figure 1. Average acceleration spectra for different site conditions [2]. 

 
Simplifications provided by former researchers (Dobry et al. [3] for example) are all to 

make analytical solution possible to the heterogeneous cases. The attention has recently been 
more focused on the realistic variation profile of the dynamic parameters of natural alluvial 
deposits. Towhata [4] pointed out this matter efficiently by incorporating a nonlinear 
variation pattern for shear modulus. He concluded that more energy can reach the ground 
surface than in the more simplified conventional way of calculation. Later on and very 
recently Rovithis et al. [5] explored the seismic response of inhomogeneous soil deposits 
analytically by means of one-dimensional viscoelastic wave propagation theory. Their work 
comprised of a continuously inhomogeneous stratum over a homogeneous layer of higher 
stiffness by employing a generalized parabolic function to describe the variable shear wave 
propagation velocity in the inhomogeneous layer. The above mentioned studies are based 
solely on the deterministic variation of soil dynamic properties. However, the geological 
configurations and the material properties of soil deposits such as density, elastic moduli and 
damping coefficients are not always known with sufficient accuracy to justify a deterministic 
analysis. Consequently, uncertainties in the properties of the medium will result in 
uncertainties in the predicted responses. In other word, deterministic descriptions of the 
spatial variability of soil properties are not always feasible, and the sufficiently large degree 
of disorder exhibited, leads to the use of statistical methods in describing their distribution 
within a "statistically homogeneous" soil zone [6]. 

Nour et al. [7] dealt with the numerical simulation of heterogeneous soil profile and its 
behavior under uniform seismic environment. Soil properties of interest were shear modulus, 
damping ratio and Poisson’s ratio, modeled as spatially random fields. In this frame, the 
seismic response was carried out via Monte Carlo simulations combined with deterministic 
finite element method. The analysis integrated the influence of, coefficient of variation of the 
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three soil properties, the inter-property correlation coefficients, as well as horizontal and 
vertical correlation lengths. Results of this analysis indicated that heterogeneity highly 
influences the behavior of the soil profile. Obtained results indicated that the shear modulus 
and damping ratio are of prime importance and Poisson’s ratio variability can be neglected in 
a dynamic analysis of a soil profile. 

The latest study in the stochastic field belongs to Sadouki et al. [8] by presenting a unified 
formulation of an analytical method for evaluating the response of a random soil medium to 
surface or earthquake excitations. Specifically, their study focused on the case of a 
horizontally stratified layered soil profile. Soil properties, mass density and shear modulus of 
each layer were modeled as spatial random fields to examine the effects of stochastic 
variations of mass density and shear modulus on the amplification function. 

The random fields for shear modulus are generated using simulations by the Monte Carlo 
method. This method consists of performing a set of probabilistic realizations of the medium, 
used hereunder to predict the transfer function and the extreme acceleration at ground surface 
via deterministic calculation for each realization, and proceeding thereafter to the statistical 
treatment of the obtained results.  

The scope of this paper is to investigate the effect of inherent variability of soil profile on 
natural frequency contents of alluvial deposits. Soil property of interest is shear modulus 
modeled herein as spatially random field. Shear modulus was modeled using the lognormal 
distribution. This choice is motivated by the fact that lognormal distribution enables 
realization of positive shear moduli with different levels of variability. In this regard, the 
dominant natural frequency of heterogeneous soil stratum was investigated by developing a 
‘FISH’ code in FLAC and conducting a so called "sweep" test. Monte Carlo simulation 
approach was used in generation of 2D log-normally distributed correlated random fields. 

Frequency content of a system with multiple degrees of freedom (MDOM) consists of 
different modal frequencies. There all always a few frequencies which are dominant 
frequencies among all. A couple of first frequencies mainly control the resonance behavior of 
the system. This paper focuses on the first five modal frequencies of a homogenous system 
and investigates the fitness and closeness of the dominant frequency of a stochastic 
heterogeneous system to the modal frequencies of homogenous system. Analyses highlights 
the effect of shear modulus variability introduced as the coefficient of variation and its 
correlation distance, on the resonance behavior and natural frequency contents of 
heterogeneous soil stratum in comparison to homogenous condition.  

 
2. Sources of uncertainty in geotechnical soil parameters 

 
There are three primary sources of uncertainty in geotechnical design parameters: inherent 

soil variability, measurement error, and transformation uncertainty (Figure 2). Inherent 
variability is the consequence of natural geologic processes that continually modify the soil 
mass in situ. Measurement error results from equipment, test-operators, and random test 
effects during measurements. Transformation uncertainty is introduced when field or 
laboratory measurements are “transformed” into design soil properties with empirical or other 
correlation models. Among these three sources of uncertainty, only the inherent soil 
variability is taken into consideration in this study. 
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where n is the total number of samples. 

A useful dimensionless ratio can be calculated by normalizing ߪ with respect to the 
“local” mean soil property, µ obtained from the depth varying trend function, t(z). This ratio 
is called the coefficient of variation, COV. 
 

ܸܱܥ  ൌ
ߪ
 (4) ߤ

 

An extensive literature review was made by Phoon and Kulhawy [10] to estimate the 
typical COV values of inherent soil variability. However, this task was complicated because 
most COVs reported in the geotechnical literature are based on total variability analyses, as 
illustrated in Figure 3. Therefore, the reported COVs may be considerably larger than the 
actual inherent soil variability because of four potential reasons: (1) soil data from different 
geologic units are mixed, (2) equipment and procedural controls are generally insufficient, (3) 
deterministic trends in the soil data are not properly removed, and (4) soil data are gathered 
over a long period of time with different testing techniques. 

The lower bound for the COV of inherent variability of undrained shear strength was 
reported by Phoon and Kulhawy [10] to remain relatively constant at about 10% over the 
range of mean values studied.The upper bound on the COV seemed to decrease with 
increasing mean. However, it was found not to exceed 50%. If someone could assume the 
undrained shear modulus, a linear function of a the undrained shear strength as a single 
random variable, the First Order Second Moment (FOSM) concept would lead to the 
conclusion that the mean and standard deviation of the undrained shear modulus are the same 
function of undrained shear strength. It could then be expected that the typical values of 
 for undrained shear modulus lie in the range of 10–50%. Current study solely considers  ீܸܱܥ
a wider range of 10-100% for parametric study purpose. Other parameters like, density and 
Poisson’s ratio are maintained at constant values because they do not show strong variation 
according to literature review [10]. 

 
3. Correlation structure 

 
The property variations of the in-situ soil represented by the mean value, coefficient of 

variation and correlation distance influence the likely parameters for design. In the present 
study, soil shear modulus G is considered as random variable and assumed to be a log-
normally distributed value represented by parameters mean, ீߤ  standard deviation,ீߪand 
spatial correlation distance, δ୚ which represents a length over which significant correlation in 
a specific soil property is still observed. A large autocorrelation distance value implies that 
the soil property is highly correlated over a large spatial extent, resulting in a smooth 
variation within the soil profile [11]. Use of log-normal distribution is appropriate as the soil 
properties are non-negative and the distribution also has a simple relationship with normal 
distribution. A log-normally distributed random field is given by: 

 

෤ ௜ሻݔሺ ܩ  ൌ ௟௡ߤሼ݌ݔ݁ ீሺݔ෤ሻ ൅ ௟௡ߪ ீሺݔ෤ሻ. ௜ܰ ሺݔ෤ሻሽ (5) 
 
where ݔ෤ is the spatial position at which ܩ is desired. ܰሺݔ෤ሻ is a normally distributed random 
field with zero mean and unit variance. The values of ߤ୪୬ ீ  and ߪ୪୬ ீ are determined using 
log-normal distribution transformations given by: 

௟௡ߪ  ீ
ଶ ൌ ݈݊ ቆ1 ൅

ீߪ
ଶ

ீߤ
ଶ ቇ ൌ ݈݊ሺ1 ൅  ଶሻ (6)ீܸܱܥ
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 ௦ܸ ڌ ܪ4 ௛݂
௦ (14) 

 

 
 
 

௦ܸ ൌ ඨ
ܩ
 ߩ

(15) 

 

where ρ is the mass density of the soil. 
Brad and Bouchun [17] showed that the natural frequency of two-dimensional alluvial 

deposits depends only on two parameters, namely, the one-dimensional natural frequency at 
the alluvial center and the shape ratio according to equation (16): 

 
 ଴݂ ൌ ௛݂

௦ඥ1 ൅ ሺ2.9ܪ ⁄ܮ0.5 ሻଶ (16) 
 
where ଴݂ is the natural frequency of 2D natural soil deposit, H and L are the depth and length 
of alluvial deposit respectively. 
The variability of the fundamental frequency of the model under study is found by 
conducting Monte Carlo sweep analyses which sweeps a frequency ranging from 1 to 10 Hz 
and numerically records the response at the control point representing the soil site. 
 
 

6. Monte Carlo simulation 
 

A Monte-Carlo simulation is a procedure, which seeks to simulate stochastic processes by 
random selection of input parameters in proportion to their joint probability density function. 
It is a powerful technique that is applicable to both linear and non-linear problems, but can 
require a large number of simulations to provide a reliable distribution of the response. 
In what follows, the approach proposed in this paper, is employed to evaluate the effects of 
stochastic distribution of shear modulus representing a dynamic soil property on the 
resonance properties of natural alluvial deposits under seismic wave propagation. It uses the 
Monte Carlo simulation method in the sense that digital simulations of stochastic fields are 
combined with finite difference analyses. 

The aforementioned approach referred to as "indirect simulation", although involving 
more computational effort, is deemed as more robust when compared to the "direct" approach 
- as the lack of data describing the cross-correlation structure of soil properties could lead to 
estimations with strong dependence on the selection of the empirical correlations with field 
test results. The Monte Carlo procedure followed in the present study involves three basic 
steps [18]: 

1- Estimation of the statistics of spatial variability (spatial trends, spatially dependent 
variance, probability distribution functions and correlation structure) based on the results of 
extensive field measurement programs. 

2- Digital generation of sample functions of a two-dimensional, non-Gaussian stochastic 
field, each simulated sample function representing a possible realization of soil property 
values over the analysis domain. 

3- Deterministic finite difference analyses using stochastic parameter input derived from 
each sample field of soil properties; a sufficient number of finite difference simulations have 
to be performed to derive the statistics of the response. 

In such a technique, the governing equation is solved many times, each with a different set 
of the parameter of interest. Any set of values is an equally probable representation of this 
parameter. Finally, the results of the model are statistically analyzed to provide a stochastic 
output. In contrast, deterministic solutions define unique values for the results. Thus, 
stochastic solutions have the advantage of assessing uncertainty in model output due to 
parameter variability. 
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7. Dynamic modeling 
 

Spatial variability of mechanical soil properties is modeled in two dimensional plane strain 
condition. Time and frequency-domain analyses were performed on the soil as nonlinear 
elastic material by adapting hysteretic damping behavior. The finite difference model used in 
the dynamic analysis is a statistically variable soil profile of 60 m horizontally and 30 m 
vertically as shown in Figure 5. It overlays a flexible bedrock where the input seismic motion 
is prescribed. The lateral extent of the soil is truncated by a transmitting boundary which 
eliminates spurious reflective waves and simulates the missing part of soil extending to 
infinity. For the problem under study, 1800 quadrilateral finite difference elements are used. 
The mesh was fixed at the base with quiet boundary, and restrained only vertically at the 
sides to model the free field conditions.  

 

(a) (b) 
Figure 5. Dynamic model and boundaries; (a) quiet boundaries and (b) free field [19]. 

 
The lateral boundaries of the main grid are coupled to free-field columns through viscous 

dashpots similar to the quiet boundaries developed by Lysmer and Kuhlemeyer [20]. Along 
the free-field columns a 1D calculation is carried out in parallel with the main grid 
calculation. In this way, if the main grid motion differs from that of the free-field, for 
instance due to waves radiating from the walls, then the dashpots are activated to absorb 
energy. 

In static analyses, fixed or elastic boundaries (e.g., represented by boundary-element 
techniques) can be realistically placed at some distance from the region of interest. In 
dynamic problems, however, such boundary conditions cause the reflection of outward 
propagating waves back into the model and do not allow the necessary energy radiation. 
Therefore quiet boundaries must be applied at the model boundaries.  In order to apply quiet 
boundary conditions along the same boundary as the dynamic input, the dynamic input must 
be applied as a stress boundary, because the effect of the quiet boundary will be nullified if 
the input is applied as an acceleration (or velocity) wave. The velocity record is converted 
into a shear stress wave using equation (17): 

 
௦ߪ  ൌ 2ሺܥߩ௦ሻݒ௦ (17) 

 
where σୱ is applied shear stress, ρ is mass density, Cୱ is shear wave velocity, and vୱ is input 
shear particle velocity. 
The probability distribution of the natural frequency is studied by applying acceleration time 
histories at the surface midpoint of the finite difference mesh for different realizations of the 
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same stationary random field. For the stochastic analyses, different COV of shear modulus 
are selected for comparison. The values of COVG considered are 20, 40, 60, 80 and 100%. 
Properties of the soil in deterministic and stochastic phases are indicated in Table 1. 
 

Table1. Material properties in stochastic analyses. 
Properties Symbol Soft soil Medium soil Stiff soil 

Density ߩ ሺkg mଷ⁄ ሻ 1800 1900 2000 
Poisson’s ratio 0.35 0.35 0.35 ݒ 
Shear modulus ܩ ሺܽܲܯሻ 32.4 46.3 74.1 
Vertical correlation length ߜ௏ሺmሻ 1 1 1 
Correlation anisotropy  ߜு ⁄௏ߜ  1, 20, 40 1, 20, 40 1, 20, 40 
Coefficient of variation of 
shear modulus 

COVG (%) 0, 20, 40,60,80,100 0,20,40,60,80,100 0,20,40,60,80,100 

 
It should be noted that laboratory tests such as resonant column or cyclic triaxial cell 

cannot reproduce the in-situ fabrics of the grains skeleton. Furthermore, the shear stiffness 
measured in the laboratory is not influenced by aging or preloading effects. These effects 
may lead to an increased in situ Gmax [21]. Thus, laboratory tests are usually deemed to 
under-estimate the in-situ values of Gmax. The shear modulus data presented in Table 1 are 
therefore increased according to a correlation diagram given in Figure 6. It shows that the 
ratio of small strain ("dynamic") and large-strain ("static") stiffness moduli is a function of 
the static values. The selected ranges for shear modulus in Table 1, fits with soil type IV 
according to the Iranian code of practice for seismic resistant design of buildings [22]. 
 

Figure 6. Comparison of the correlation Edyn/Estat by Alpan [21].  
 
 
 

8. Random field modeling 
 

The in-situ soil property variation is represented by the mean value, the coefficient of 
variation and the correlation distance, the most representative parameters for stochastic 
design. In present study, shear modulus, G is considered as a random variable and assumed to 
be a correlated log-normally distributed parameter introduced by mean, µୋ standard 
deviation, σୋand different correlation distances, ߜ௏ and ߜு.The use of lognormal distribution 
is appropriate in geotechnics as the soil properties are strictly non-negative and the 
distribution also has a simple relationship with normal distribution. 

The total computation process is conducted by developing a ‘FISH’ code in FLAC 2D. 
Monte Carlo simulation approach is used in generation of correlated 2D realizations of 
random field. In present study, values of COVG lie in the range of 20–100% (Table 1). Mean 
shear modulus, µୋbears the value of 32.4, 46.3 and 74.1 MPa and are kept constant 
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Figure 8. Flowchart of the computation process used in current study. 

 
9. Results and discussion 
 

This study considers the stochastic property of shear modulus, by investigating its effects 
on the extreme ground surface acceleration statistics (time domain), as well as on the mean 
transfer function (frequency domain). Also, the influence of the correlation lengths of shear 
modulus on output parameter statistics is investigated.  

In-situ and laboratory determination of the coefficient of variation of shear modulus is 
troublesome and a large number of samples are tested very rarely. In order to cover a wide 
range of variability for shear modulus different coefficients of variation ranging from 0 to 
100% were considered. Variability in shear modulus influences the natural frequency 
statistics for alluvial deposits. To this aim, the transfer function is calculated and plotted 
against frequency and the natural frequency statistics are obtained by extremizing the transfer 
functions for different realizations. 
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Results of stochastic analyses for different sets of statistical parameters for shear modulus 
introduced earlier are provided in Figure 9 in terms of mean natural frequency, µ୒୊against the 
coefficient of variation of shear modulus, COVG. Indeed the influence of the spatial 
variability of shear modulus on mean natural frequency of alluvial deposits bearing different 
soil conditions and anisotropic correlation structures is highlighted. 

 

  
(a) (b) 

(c) 
Figure 9. Mean natural frequency variation with the spatial variability of shear modulus; 

 (a) soft clay; (b) medium clay; (c) stiff clay. 
 

It is interesting to note from Figure 8, that the correlation distance of the shear modulus at 
horizontal direction has a little effect on the natural frequency of deposits while direction of 
shear wave propagation is vertical. This is as expected as the correlation length in vertical 
direction, ߜ௏ is constant through analyses and correlation anisotropy implies different 
horizontal correlation lengths and this is believed to have minor effect when the wave 
propagation direction is vertical because each horizontal layer acts in average sense and 
variation in correlation length does not affect the overall averages. The abovementioned 
effect is justified by the fact that the lateral boundaries prevent radiation of refracted and 
reflected waves through energy absorbing elements. Another observation from Figure 9 is 
that the mean natural frequency decreases with the COVG increasing. This behavior can be 
explained better when depicting the variation of natural frequency along with their spectral 
ratios in Figure 10 for different soil conditions and the degrees of variability of the shear 
modulus. 

Figure 10 illustrates the Fourier amplitude against the frequency or the frequency contents 
of different realizations. The sparsely distributed points in the chart are obtained from 
calculation of the dominant natural frequencies of different stochastic models substantiated 
by different realizations employing sweep test analyses explained earlier. Each point 
corresponds to a single analysis and represents the dominant natural frequency of that single 
realization. The goal of this illustration is to compare the dominant frequency of the 
stochastic varying models with a representative homogeneous condition while preserving the 
overall mean shear modulus constant throughout the domain of analysis. Indeed each 
realization has multiple modal frequencies, but this study is to reflecting the dominant natural 
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frequency of heterogeneous models by allocating them through a benchmark and 
representative homogeneous model specified by a few distinctive natural frequencies. 

 Superimposed on the same graph is the theoretically calculated transfer function for the 
representative homogeneous model in solid line extremizing at modal frequencies. The mean 
shear moduli were adopted in equation (19) to calculate the theoretical transfer function 
assuming zero damping. 

 

 
,ሺ߱ܨ| ߦ ൌ 0ሻ| ൌ

1

ටܿݏ݋ଶ ቀ߱ܪ
௦ܸ௦

ቁ ൅ ܽ௭
ଶ݊݅ݏଶ ቀ߱ܪ

௦ܸ௦
ቁ
 

(19) 

 
where ܨ is the transfer function, ܽ௭

 ൌ ఘೞ௏ೞೞ
ఘೝ௏ೞೝ

 is the impedance ratio, ߩ௦is the mass density of 
soil layer, ߩ௥is the mass density of elastic bedrock, ௦ܸ௦ is the shear wave velocity of soil, ௦ܸ௥ 
is the shear wave velocity of bedrock and ߱ is the circular frequency. 

According to the results illustrated in Figure 10, it is obvious that for low COVs of 
inherent variability of shear modulus, points corresponding to the dominant natural frequency 
of stochastic models are nicely fitted and nested to the places assigned to the modal 
frequencies of representative homogenous model. This obviously means that for low 
coefficients of variability of shear modulus the natural frequency of soil stratum is estimated 
with less uncertainty and their behavior is similar to the deterministic mode. Diffusion and 
scarcity of the points are clearly observed when the COV of shear modulus gets remarkable. 
This implies the inadequacy of deterministic analyses for highly variable stochastic system. 
Natural alluvial deposits bearing inherent variation of the deformation and strength 
parameters have been widely pointed out in literature to be inherently variable. Phoon and 
Kulhawy [10] can be conferred for more insight into the problem. 

Another observation from Figure 10 is that the overall concentration of the natural 
frequency points moves toward left when the coefficient of variation of shear modulus 
increases. This implies that the mean natural frequency decreases with the increase of COVG 
and it was also confirmed the same in Figure 9. This behavior can be attributed to the 
occurrence of soft clusters inside the discretized model. They will probably cause significant 
reflection and refraction leading to the conclusion that such soft points dominate the dynamic 
behavior of the system and the decreasing in mean natural frequency of the deposit is then 
expected.  

Sakayama and Tonouchi [23] presented a logging data in which a soft thin deposit inside 
an interface caused a significant wave reflection. However, Towhata [4] believes that 
generally, such a thin layer does not seem to extend on a straight line and to be wide enough 
to affect the regional earthquake response of the ground. 
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9.1. Theoretical interpretation 
 

A very simple theoretical model for uniform soil on rigid rock illustrates that the 
frequencies at which strong amplification occurs depend on the geometry (thickness) and 
material properties (S-wave velocity) of the soil layer. For many naturally occurred soil 
profiles, the distribution of shear-wave velocity with depth does not fit any of the cases for 
which closed form solutions are available, and, therefore, numerical methods are usually 
sought to compute the fundamental frequency. Figure 12 illustrates how the shear modulus is 
spatially variable through the depth of natural alluvial deposits. The realization represents a 
deterministic distribution of shear modulus. It is indeed considered to be a n-layer profile 
while n can be a large number. In order to clarify the importance of weak zones in response 
behavior of natural alluvial deposits, a simplified procedure developed by Dobry et al. [3] 
was employed for estimation of the fundamental frequency of two-layer soil profile. 

 

 
Figure 12. 1-D deterministic realization of spatially variable soil profile. 

 
 

Two soil profiles were chosen to show the effect of the coefficient of variation of shear 
modulus on fundamental frequency of deposits theoretically. Simple chart provided in Figure 
13 is utilized to show the mentioned effect. The length and density of both profiles are kept 
constant at 2 m and 2000 kg/m3respectively. The first soil profile consists of two different 
shear moduli equal to G1= 34 MPa (Vs1=130 m/s) and G2= 46 MPa (Vs2=151.5 m/s), and the 
second soil profile, is formed of two different shear moduli equal to G1= 23 MPa (Vs1=107 
m/s) and G2= 57 MPa (Vs2=168 m/s) while maintaining the average shear modulus constant 
at G= 40 MPa.  

Figure 13. Fundamental period of two-layer system [3]. 
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According to the aforesaid theoretical procedure provided in Figure 13, the calculations 

imply that the first profile with lower coefficient of variation of shear modulus shows higher 
natural frequency than the second profile. This implies that introducing weak zones in spatial 
variability realizations while maintaining a constant overall mean shear modulus value, is 
expected to cause a decrease in profile natural frequency.  

This theoretical interpretation is inconformity with finding of Monte Carlo analyses 
illustrated in Figure 14 for different soil conditions. This means that the increase in COVG 
introduces more variability in shear modulus which itself implies that more probability of the 
formation of weak zones is expected. 

Figure 14. Mean natural frequency variation with COVG for different soil types (ߜ௏=1 m and  ఋಹ
ఋೇ

ൌ 1). 
 
 

10. Conclusions 
 

The major contribution of the present study is to investigate the effect of uncertainty in 
soil shear modulus estimation on resonance behavior of naturally occurred alluvial deposits. 
It is observed that there is a significant variation in natural frequency due to the variation of 
shear modulus. Variation of natural frequency of soil deposits is stated in term of mean 
natural frequency and the coefficient of variation of natural frequency. From the results of 
numerical dynamic sweep test analyses it is concluded that: 

1- The mean natural frequency of spatially variable natural alluvial deposits decreases due to an 
increase in variability of shear modulus or the shear wave velocity in other words. This 
behavior is justified by formation of weak zones introduced by high variability in natural 
deposits. The results of the current study emphasizes that ignoring the spatial variation of 
shear modulus of natural alluvial deposits will in effect lead to overestimation of the natural 
frequency of soil deposits. 

2- The coefficient of variation of natural alluvial deposits increases with the increase in 
variability of the shear modulus. This means that the uncertainty involved in natural 
frequency estimation increases with the increase in uncertainty embedded in shear modulus or 
shear wave velocity estimation. Another implication is that the reliability of conventional 
deterministic analyses fades when the soil deposit is highly variable spatially. 

3- Monte Carlo simulation technique combined with numerical analysis is a very useful tool to 
explore and analyze the stochastic behavior of the natural alluviums. 
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