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Abstract 

A constitutive model based on two–dimensional unstructured Galerkin finite volume method 
(GFVM) is introduced and applied for analyzing nonlinear behavior of cracked concrete structures in 
equilibrium condition. The developed iterative solver treats concrete as an orthotropic nonlinear 
material and considers the softening and hardening behavior of concrete under compression and 
tension by using two equivalent uniaxial stress–strain relations. The concepts of current strength in a 
principal stress space and secant stiffness matrix are utilized to describe the biaxial behavior of 
concrete and the post–peak progress of stress–strain relation is modeled using the fracture energy 
method. Moreover, a smeared rotating crack method (SRCM) formulation is implemented in the 
solver to spot the nonlinear behavior of damaged structure. In order to demonstrate the performance 
of the model at a structural level, available experimental results of a notched beam under three point 
bending are presented. With the intention of demonstrating the post–peak performance of the model, 
the procedure of loading is simulated by imposing an incremental monotonic displacement. The 
envelope curve of equivalent load versus crack mouth opening displacement (CMOD) is utilized to 
evaluate the accuracy of the introduced method. 
 

Keywords: Iterative Galerkin finite volume method; Smeared rotating crack method; Cracked concrete  
                   softening and hardening; Equilibrium condition. 
 

1. Introduction 
 

During the recent decades and by the advances in micro processing technologies, 
reliability and applicability of numerical analysis have increased significantly. In this regard, 
finite volume method (FVM) has earned a great reputation, especially in the field of 
computational fluid dynamics (CFD) [1], heat and mass transfer calculations [2]. Nowadays, 
according to the high potentials of this method, mainly in considering large displacements, 
researchers show interest in using FVM for computational solid mechanics (CSM) [3]. 
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Previously, finite element method (FEM) was the undisputed approach in the field of 
CSM, especially with regard to deformation problems involving nonlinear material analysis 
[1], but since FEM could face some difficulties such as volumetric locking in dealing with 
excessive displacements [2], the interest in using FVM as an alternative solution method has 
increased. Unlike finite difference method (FDM) [4] which solve partial differential 
equation(s) of the desired problem on a set of grid points, FVM integrates the governing 
equation(s) over pre–defined sub–domains [2]. Similar to the FEM, some schemes of the 
FVM have been developed for solving mathematical models on unstructured meshes. So, 
modeling of geometrical complexities of real world problems and the refinement of grid 
spacing in the regions with high gradient of dependent variables are possible via FVM 
solution procedure. Galerkin finite volume method (GFVM) is among various schemes of 
FVMs which are introduced based on the procedure of defining sub–domains and integrating 
governing equation(s). GFVM is an overlapping vertex based method which utilizes the 
Galerkin’s weighted residuals concept and linear shape function of triangular and tetrahedral 
elements in two-dimensional (2D) and three-dimensional (3D) spaces, respectively [5]. 

On the other hand, the concept of smeared rotating crack method (SRCM) which is 
developed from crack band theory [6] is in total coordination with GFVM. Utilizing SCM in 
modeling the behavior of concrete under excessive tension and compression proved to be 
practical [7]. In the present paper, the nonlinear behavior of cracked concrete and evolution 
of crushes through the material is modeled by developing a GFVM numerical solver based on 
SRCM concept. 

 
2. Governing equations 
 

Based on the concept of SRCM, the iterative process of predicting the nonlinear behavior 
of concrete is divided into two major parts. The first part employs linear–elastic formulation 
to model the linear behavior of solid materials, while the second part contains an appropriate 
model which could alter the properties of the material by using the criteria related to 
nonlinear behavior of concrete. 

 
2.1. Linear–elastic formulation 
 

The general mathematical model for continuum mechanics in the absence body forces can 
be defined by Cauchy’s equilibrium equations. 

 
ሷݑߩ ൌ ߪ்ܵ ൅ ܾ , (1)

 
where, ߩ is the material density, ݑሷ  is the acceleration, ߪ is the stress tensor and ܾ is the body 
force. 

For 2D problems and in x–y coordinates system, stress tensor would take the form of  
௫௬ߪ ൌ ሾߪ௫ ௬ߪ ߬௫௬ሿ். The acceleration vector is obtained from displacement vector 
ሬറݑ ൌ ሾݑ௫  ௬ሿ் and operator ்ܵ is defined asݑ

 

்ܵ ൌ ቎
డ

డ௫
0 డ

డ௬

0 డ
డ௬

డ
డ௫

቏ . (2)

 
So the matrix form of Cauchy’s equilibrium equations in 2D x–y coordinates system is 
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ߩ ቐ
డమ௨ೣ
డ௧మ

డమ௨೤

డ௧మ

ቑ ൌ ቎
డ

డ௫
0 డ

డ௬

0 డ
డ௬

డ
డ௫

቏ ൝
௫ߪ
௬ߪ
߬௫௬

ൡ  (3)

 
For stress–strain relation, the common relations can be used as 
 

௫௬ߪ ൌ ௫௬ ,  (4)ߝ௫௬ࡰ
 
where, ߝ௫௬ ൌ ሾߝ௫௫ ௬௬ߝ  ௫௬ is the 2D stiffness matrix whichܦ ௫௬ሿ் is the strain tensor andߛ
takes the following form, 
 
 
௫௬ࡰ  ൌ ൦

௫௬ሺଵ,ଵሻܦ
௫௬ሺଵ,ଶሻܦ

௫௬ሺଵ,ଷሻܦ
ڭ ௫௬ሺଶ,ଶሻܦ

௫௬ሺଶ,ଷሻܦ
ݕݎݐ݁݉݉ݕܵ … ௫௬ሺଷ,ଷሻܦ

൪. (5)

 
So stress–strain relation is defined as 
 

 
௫௫ߪ ൌ ௫௫ߝ௫௬ሺଵ,ଵሻܦ ൅ ௬௬ߝ௫௬ሺଵ,ଶሻܦ ൅ ௫௬ߛ௫௬ሺଵ,ଷሻܦ ,

௬௬ߪ ൌ ௫௫ߝ௫௬ሺଵ,ଶሻܦ ൅ ௬௬ߝ௫௬ሺଶ,ଶሻܦ ൅ ௫௬ߛ௫௬ሺଶ,ଷሻܦ ,
߬௫௬ ൌ ݔݕ߬ ൌ ௫௬ሺଵ,ଷሻܦ

௫ߝ ൅ ௫௬ሺଶ,ଷሻܦ
௬ߝ ൅ ௫௬ሺଷ,ଷሻܦ

௫௬ߛ .

 (6)

 
Considering the elastic behavior of material, the strains could be replaced by 
 

௫௫ߝ ൌ
௫ݑ߲

ݔ߲ , ௬௬ߝ ൌ
௬ݑ߲

ݕ߲ , ௫௬ߛ ൌ
௫ݑ߲

ݕ߲ ൅
௬ݑ߲

ݔ߲ . (7)
 

So the Cauchy’s equilibrium equations in two Cartesian coordinate directions take the form, 
 

࣋
ࣔ૛࢛࢞

૛࢚ࣔ ൌ
߲

ݔ߲ ቈܥଵ ൬
௫ݑ߲

ݔ߲ ൰ ൅ ଶܥ ቆ
௬ݑ߲

ݕ߲ ቇ ൅ ଷܥ ቆ
௫ݑ߲

ݕ߲ ൅
௬ݑ߲

ݔ߲ ቇ቉
ᇩᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇫ

࢞࢞࣌

 

                                  ൅
߲

ݕ߲ ቈܥଷ ൬
௫ݑ߲

ݔ߲ ൰ ൅ ହܥ ቆ
௬ݑ߲

ݕ߲ ቇ ൅ ଺ܥ ቆ
௫ݑ߲

ݕ߲ ൅
௬ݑ߲

ݔ߲ ቇ቉
ᇩᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇫ

࢟࢞࣎

 

(8)
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ఙ೤೤
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௬ݑ߲
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௫ݑ߲
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௬ݑ߲
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(9)

where, coefficients ܥଵ ܥ ݋ݐ଺ are 
  

ଵܥ ൌ ,௫௬ሺଵ,ଵሻܦ ଶܥ ൌ ,௫௬ሺଵ,ଶሻܦ ଷܥ    ൌ ,௫௬ሺଵ,ଷሻܦ
ସܥ ൌ ,௫௬ሺଶ,ଶሻܦ ହܥ ൌ ,௫௬ሺଶ,ଷሻܦ ଺ܥ ൌ ௫௬ሺଷ,ଷሻܦ

.  (10)

 
2.2. Nonlinear formulation 
 

In general, when a principal stress exceeds the material’s strength, the material cracks or 
crushes perpendicular to the direction of the principal stress. Hence, the isotropic stress–strain 
relations can be replaced by an orthotropic law. 
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The proposed model in this paper, utilizes the SRCM concept [6] to represents the 
damaged (cracked or crushed) concrete as an orthotropic material. It’s assumed that the 
directions of the principal stresses and those of the principal strains in the concrete remain 
coincident [8]. 

 
Figure 1. Smeared rotating crack model [7]. 

 
In the SRCM (see Figure 1), the orthotropic stress–strain relations are defined as [6,7]  
 

ଵଶߪ ൌ ଵଶ  (11)ߝଵଶࡰ
where, 
 

ଵଶߪ ൌ ሾߪଵ ଶߪ ߬ଵଶሿ் , (12)
ଵଶߝ ൌ ሾߝଵ ଶߝ ଵଶሿ் , (13)ߛ

 
and ܦଵଶ is the secant stiffness matrix [7] which is defined in section 2.2.4. The relation 
between ߝଵଶ in the 1–2 coordinates system (which correspond to the principal directions) and 
 ௫௬ in the global x–y coordinates system is given asߝ
 

ଵଶߝ ൌ ௫௬ . (14)ߝሻߠఌሺࢀ
 

The transformation matrix ఌܶሺߠሻ is given in the form  
 

ሻߠఌሺࢀ ൌ ቎
௫ଵܥ

ଶ ௬ଵܥ
ଶ ௬ଵܥ௫ଵܥ

௫ଶܥ
ଶ ௬ଶܥ

ଶ ௬ଶܥ௫ଶܥ
௫ଶܥ௫ଵܥ2 ௬ଶܥ௬ଵܥ2 ௬ଶܥ௫ଵܥ ൅ ௬ଵܥ௫ଶܥ

቏, (15)

 
in which, ܥ௜௝ ൌ  ௜௝ሻ, is the cosine between the ݅ axis and the ݆ axis. Through coordinateߠሺݏ݋ܥ
transformation, the secant stiffness matrix ܦ௫௬ in the global x–y coordinates system can be 
expressed as 
  

௫௬ࡰ ൌ ఌࢀ
்ሺߠሻࡰଵଶࢀఌሺߠሻ . (16)

 
Finally, the stress vector ߪ௫௬ in the global x–y coordinates system is given by  
 

௫௬ߪ ൌ ఌࢀ
்ሺߠሻߪଵଶ . (17)

 
2.2.1. Current strength 
 

The strength of concrete under multi–axial stresses cannot be predicted using the uniaxial 
tensile and compressive strengths. Therefore, when concrete is subjected to biaxial stresses, it 
is important to define the strength of concrete as a function of the stress state. 
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Figure 2. Ultimate strength envelope of concrete under biaxial stresses [6]. 

 
To reproduce the important two–dimensional strength characteristics of the laboratory 

experimental results, as shown in Figure 2, the current strength of concrete is determined 
using an ultimate strength envelope [9]. 

In the compression–compression stress state, the ultimate strength envelope is described 
by the following relation 

 

൝ ଶ݂
஼.ௌ ൌ ଵାଷ.଺ହఉ

ሺଵାఉሻమ ௖݂
ᇱ

ଵ݂
஼.ௌ ൌ ߚ ଶ݂

஼.ௌ
; ଵߪ ൑ 0, ଶߪ ൏ 0 , (18)

 
where, ௖݂

ᇱ is the uniaxial compressive strength of concrete and ߚ ൌ ଵߪ ⁄ଶߪ  is the current 
principal stress ratio. The super-script C.S stands for concrete stress.  

In the tension–tension stress state, the ultimate strength envelope is given as  
 

ቊ ଵ݂
஼.ௌ ൌ ௧݂

ଶ݂
஼.ௌ ൌ ௧݂

; ଵߪ ൐ 0, ଶߪ ൐ 0 , (19)

 
where, ௧݂ is the uniaxial tensile strength of concrete. In the compression–tension stress state, 
the ultimate strength envelope can be expressed as  
 

ቐ ଶ݂
஼.ௌ ൌ

1 ൅ ߚ3.28
ሺ1 ൅ ሻଶߚ ௖݂

ᇱ

ଵ݂
஼.ௌ ൌ ߚ ଶ݂

஼.ௌ
; െ0.17 ൑ ߚ ൏ 0 (20)

ቐ ଶ݂
஼.ௌ ൌ

1 ൅ ߚ3.28
ሺ1 ൅ ሻଶߚ ௖݂

ᇱ

ଵ݂
஼.ௌ ൌ ߚ ଶ݂

஼.ௌ
; െ∞ ൑ ߚ ൏ െ0.17 . (21)

 
2.2.2. Nonlinear stress–strain relation in compression 
 

To model the compressive behavior of concrete, as shown in Figure 3, a parabolic 
compressive hardening and softening model is used [10]. 
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Figure 3. Nonlinear behavior of concrete in compression [10]. 

 
When concrete is loaded in compression, it is assumed that the stress–strain relation is 

linear up to the initial yield at the value of ሺ1 3⁄ ሻ ௖݂
ᇱ, after which the stress–strain response is 

typically characterized by stress hardening followed by strain softening. The equivalent 
uniaxial stress–strain relation in compression is defined as 

 

௜ߪ
஼௨௥௥௘௡௧ ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

௜ߝܧ ௘ߝ ൑ ௜ߝ ൑ 0

௖݂
ᇱ

3 ൥1 ൅ 4 ቆ
௜ߝ െ ௘ߝ

௣௜ߝ
െ ௘ߝ

ቇ െ 2 ቆ
௜ߝ െ ௘ߝ

௣௜ߝ
െ ௘ߝ

ቇ
ଶ

൩ ௣௜ߝ
൑ ௜ߝ ൏ ௘ߝ

௜݂
஼.ௌ ൥1 െ ቆ

௜ߝ െ ௣௜ߝ
௨௜ߝ െ ௣௜ߝ

ቇ
ଶ

൩ ௨௜ߝ ൑ ௜ߝ ൏ ௣௜ߝ

0 ௜ߝ ൏ ௨௜ߝ

 (22)

 
 
where, ܧ is the Young’s modulus of concrete and ߝ௜ is the compressive strain. The strain ߝ௘ is 
defined as  

௘ߝ ൌ
1
3

௖݂
ᇱ

ܧ  (23)
 
The strain ߝ௣ , at which the maximum compressive strength is reached, is defined as, 

௣௜ߝ
ൌ

4
3

௜݂
஼.ௌ

ܧ ൅ ௘ (24)ߝ
 
in which,  ௜݂

஼.ௌ is the current compressive strength of concrete as defined by equations (18) to 
(21). Finally, the ultimate compressive strain ߝ௨௜ is defined by 
 

௨௜ߝ ൌ
3
2

௜ܩ
௖

݄ ௜݂
஼.ௌ ൅ ௣௜ߝ

, (25)

 
where, ܩ௜

௖ is the current compressive fracture energy of concrete, ௜݂
஼.ௌ is the current 

compressive strength in the direction ݅ and ݄ is the crack band width. It could be assumed 
that the compressive fracture energy of concrete under biaxial stresses depends on its current 
compressive strength [7] using relation 
 

௜ܩ
௖ ൌ

ሺ ௜݂
஼.ௌሻ஼௢௠௣௥௘௦௦௜௩௘

௖݂
ᇱ ௖ (26)ܩ

 
in which, ܩ௖ is the uniaxial compressive fracture energy of concrete. For linear two–
dimensional volumes, the crack band width ݄ is defined as, 
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݄ ൌ (27) ,ܣ2√
 
where, ܣ is the total area (of the control volume). 

 
2.2.3. Nonlinear stress–strain relation in tension 
 

The behavior of concrete in tension before cracking is assumed to be linear elastic. As it’s 
shown in Figure 4, a fictitious crack model that is based on a linear softening curve and the 
Mode I fracture energy is adopted after cracking has occurred [11]. Thus, the equivalent 
uniaxial stress–strain relation in tension is assumed to be  

 

௜ߪ
஼௨௥௥௘௡௧ ൌ

ە
۔

ۓ
௜ߝܧ ௖௥ߝ ൒ ௜ߝ ൒ 0

௧݂ ቈ1 െ ൬
௜ߝ െ ௖௥ߝ

௠ߝ െ ௖௥ߝ
൰

ଶ
቉ ௠ߝ ൒ ௜ߝ ൐ ௖௥ߝ

0 ௜ߝ ൐ ௠ߝ

, (28)

 
where, ܧ is the Young’s modulus of concrete, ߝ௜ is the tensile strain, and ௧݂ is the uniaxial 
tensile strength of concrete. The initial crack strain ߝ௖௥ is determined by 
 

௖௥ߝ ൌ ௧݂

(29) , ܧ
 
the maximum crack strain ߝ௠ is expressed as 
 

௠ߝ ൌ
௙ܩ2

ூ

݄ ௧݂
 , (30)

 
in which ܩ௙

ூ is the Mode ܫ fracture energy, ௧݂ is the tensile strength and ݄ is the crack band 
width which is described in equation (27). 

 

 
Figure 4. Nonlinear behavior of concrete in tension [11]. 

 
2.2.4. Secant stiffness matrix 
 

When concrete is cracked or crushed, the Poisson’s ratio is often set to zero, thus, the 
proposed model adopts a secant stiffness matrix that takes the form [7] 

 

ܦ ൌ ቎
ଵതതതܧ 0 0
0 ଶതതതܧ 0
0 0 ҧܩ

቏, (31)
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with  
 

ଵതതതܧ ൌ ఙభ
಴ೠೝೝ೐೙೟

ఌభ
೏ , ଶതതതܧ ൌ ఙమ

಴ೠೝೝ೐೙೟

ఌమ
೏ , ҧܩ ൌ ாభതതതതாమതതതത

ாభതതതതାாమതതതത . (32)
 
 

3. Numerical model 
 

In this section, formulation of the GFVM (which does not require any matrix 
manipulations) is utilized to discretize the linear–elastic equations mentioned in sub–section 
2.1. Thus, in order to ensure that the stability of iterative solution is provided, a proper time 
step limit is employed. 

The intact nonlinear formulation mentioned in sub–section 2.2 is used to apply nonlinear 
behavior model of concrete under normal stresses. Noteworthy that, it is essential to utilize a 
load imposing technique for modeling the post–peak behavior of concrete (caused by the 
strain–softening phenomenon). 

 
3.1. Galerkin finite volume method 
 
    In order to discretize the Cauchy’s equilibrium equations, the following form is considered. 
 

ߩ
߲ଶݑ௜

ଶݐ߲ ൌ ,ሬሬሬሬറ݅ܨሬሬറߘ ሺ݆ ൌ 1, 2ሻ. (33)

where, the components of the stress vector ܨపሬሬറ ൌ ௜ଵଓ̂ߪ ൅  ௜ଶଔ̂ are defined asߪ

 
ଵଵߪ ൌ ଵܥ ቀడ௨ೣ

డ௫
ቁ ൅ ଶܥ ቀడ௨೤

డ௬
ቁ ൅ ଷܥ ቀడ௨ೣ

డ௬
൅ డ௨೤

డ௫
ቁ ,  

ଵଶߪ ൌ ଷܥ ቀడ௨ೣ
డ௫

ቁ ൅ ହܥ ቀడ௨೤

డ௬
ቁ ൅ ଺ܥ ቀడ௨ೣ

డ௬
൅ డ௨೤

డ௫
ቁ ,  

ଶଵߪ ൌ ଷܥ ቀడ௨ೣ
డ௫

ቁ ൅ ହܥ ቀడ௨೤

డ௬
ቁ ൅ ଺ܥ ቀడ௨ೣ

డ௬
൅ డ௨೤

డ௫
ቁ ,  

ଶଶߪ ൌ ଶܥ ቀడ௨ೣ
డ௫

ቁ ൅ ସܥ ቀడ௨೤

డ௬
ቁ ൅ ହܥ ቀడ௨ೣ

డ௬
൅ డ௨೤

డ௫
ቁ . 

(34)

 
Following the concept of weighted residual method, multiplying the equation (33) by a 

weight function ߱ and integrating over sub–domain ߗ end up with integral form of the 
equation as 

  

඲߱ · ߩ
߲ଶݑ௜

ଶݐ߲
ఆ

ߗ݀ ൌ න ߱ · ൫ߘሬറ · ߗపሬሬറ൯݀ܨ 
ఆ

൅ න ߱ · ܾ௜݀ߗ .
ఆ

 (35)

 
In the absence of body forces, the terms containing spatial derivatives can be integrated by 

part over the sub–domain ߗ and then the weak form of the equation (35) may be written as 
 

 ඲߱ · ߩ
߲ଶݑ௜

ଶݐ߲
ఆ

ߗ݀ ൌൣ߱ · పሬሬറ൧ܨ 
௰

െ න ൫ܨపሬሬറ · ߗሬറ߱൯݀ߘ .
ఆ

 (36)

 
According to Galerkin weighted residual method, the weighting function ߱ can be chosen 

equal to the interpolation function ߶. For a triangular type element with three nodes, the linear 
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interpolation function ߶௞ (which is called shape function in FEM), takes the value of unity at 
desired node ݊, and zero at other neighboring nodes on opposite side ݇ (see Figure 5). 

 

 
Figure 5. A linear triangular element. 

 
Therefore, the summation of the term ൣ߱ · పሬሬറ൧ܨ 

௰
, which is calculated over the boundary of 

sub–domain ߗ, equals zero. So the right hand side of equation (36) can be discretized as  
 

െ න ൫ܨపሬሬറ · ߗሬറ߱൯݀ߘ
ఆ

ൌ
1
2 ෍൫ܨప෩ · ∆݈ሬሬሬറ൯

௞

ே

௞ୀଵ

 (37)

 
where, ∆݈ሬሬሬറ௞ is the normal vector of the side ݇ and ܨప෩ is the ݅ direction piece wise constant 
stress vector at the center of element associated with the boundary side ݇. 

Since linear triangular elements sharing a node form the desired sub–domain (see the 
computational control volume in Figure 6), the left hand side of equation (36) can be 
discretized as  

 
߲ଶ

ଶݐ߲ ቆන ߗ௜݀ݑ߶
ఆ

ቇ ൎ
௡ߗ

3
݀ଶݑ௜

ଶݐ݀  . (38)

 
By applying the FDM concept in procedure of discretization of left hand side transient 

term, the time derivative of ݅ direction displacement ݑ௜ in equation (36) can be discretized as 
 

ߩ
௡ߗ

3
݀ଶݑ௜

ଶݐ݀ ൌ ߩ ቆ
௜ݑ

௧ା∆௧ െ ௜ݑ2
௧ ൅ ௜ݑ

௧ି∆௧

ሺ∆ݐሻଶ ቇ
௡ߗ

3 . (39)

 
Eventually, using equations (38), (40) and (41), the discrete form of the Cauchy’s 

equilibrium equations can be formulated as: 
 

ቆ
௜ݑ

௧ା∆௧ െ ௜ݑ2
௧ ൅ ௜ݑ

௧ି∆௧

ሺ∆ݐሻଶ ቇ ൌ
3 ∑ ሺߪ෤௜ଵ∆ݕ െ ሻ௞ݔ∆෤௜ଶߪ

ே
௞ୀଵ

௡ߗߩ2
൅

ܾ௜

(40) ߩ3

The ߪ௜௝ relations can be formulated in discrete form as 

௫௫ߪ ൌ
1

௞ܣ
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௞

ே

௠ୀଵ
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෍ ቀܥଷݑ௫∆ݕ െ ݔ∆௬ݑହܥ ൅ ݕ∆௫ݑ଺൫ܥ െ ൯ቁݔ∆௬ݑ

௞
,

ே

௠ୀଵ
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௞ܣ
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 (41)
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where, ܣ௞ is the area of triangular element associated with boundary side ݇ of the sub–
domain ߗ௡ (see Figure 6). 

 
Figure 6. Triangular element with area ܣ௞ withinthe sub–domain ߗ௡. 

 
3.2. Computational iteration 
 

In the iterative marching to the equilibrium conditions, it is necessary to select proper time 
step limit. So, that the stability of solution procedure is provided. For this purpose, the time 
step for solution of GFVM formulation of Cauchy equations on each control volume can be 
used as a limiting parameter for stabilizing the iterative marching of the computations to the 
equilibrium condition.   
 
3.3. Load imposing technique 
 

It’s essential to utilize a load imposing technique which is capable of modeling the post–
peak behavior of concrete, caused by the strain–softening phenomenon. Thus, by imposing 
displacement on the specimen and then calculating the equivalent load, the modeling of post–
peak behavior is possible. 

Since abrupt imposing external loads can lead to instability of numerical solution, a 
gradual load imposing technique which uses a relaxation coefficient 0 ൏ ோ௘௟௔௫ܥ ൑ 1 during 
some computational iteration is implemented in the present model, 

ோ௘௟௔௫ܥ ൌ ݊݅ܯ ൝൭
ௌ௧௘௣ܫ
ܮ

ൗݐ∆
൱ , 1.0ൡ, (42)

 
where, ܫௌ௧௘௣ is the iteration number at the desired stage of the computation and ܮ is a length 
scale that can be assumed as the distance between maximum displacement and the center of 
external load or constraint (support location). 

In a realistically failed structure, we know that there are commonly several real open 
cracks that may lead to the failure of the structure. However, in the smeared rotating crack 
model, we often experience spurious cracking at a control volume center with a small crack 
strain. At the later loading stage, this control volume center may show unloading behavior, 
and may even load again. Furthermore, a realistic structure has the ability to redistribute 
stress after a crack opens, which similarly often leads to unloading in the concrete. It is 
therefore necessary to define the loading, unloading, and reloading behaviors of concrete. 

In this paper, it’s assumed that the cell which is cracked or crushed, will not gain any 
strength through the process of unloading or reloading (see Figure 7). It should be pointed out 
that the assumed unloading/reloading scheme is suitable for monotonic loading. However, for 
cyclic loading and the long–term response of concrete structures, a more realistic 
unloading/reloading scheme needs to be modeled. 
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Figure 7. Loading–unloading–reloading scheme. 

 
4. Computational results 
 

In order to verify the accuracy of nonlinear GFVM solver, a 700×150×80 mm notched 
concrete beam with a notch of 50 mm (which simulates a crack) under three points bending is 
considered which. The properties of the specimen are tabulated in Table 1. Then, the results 
of nonlinear GFVM solver are compared with the available experimental measurements [12]. 

 
Table 1. Properties of concrete specimen. 

Concrete Properties Value 
Density ሺߩሻ 2403 ௞௚

௠య  
Modulus of Elasticity ሺܧሻ 32   ܽܲܩ

Poisson’s Ratio ሺ߭ሻ 0.15  
Compressive Strength ሺ ௖݂

ᇱሻ 58.3   ܽܲܯ
Tensile Strength ሺ ௧݂ሻ 4.15   ܽܲܯ

Compressive Fracture Energy ሺܩ௖ሻ 175 ݇ܰ ݉⁄   
Tensile Fracture Energy ሺܩ௙ሻ 164 ܰ ݉⁄   

 
In order to present the ability of the GFVM solver to deal with mesh refinement in the 

vicinity of the crack, an unstructured triangular mesh is utilized. The triangular mesh 
containing 1277 nodes and 2326 cells (triangular elements) which represents laboratory 
testing setup are shown in Figure 8. 

 
Figure 8. Numerical setup of the unstructured triangular mesh. 

 
As mentioned before, the load is imposed by applying the displacement on the specimen. 

Thus, in an attempt to evaluate the equivalent load, it’s essential to utilize the internal stresses 
induced by the imposed displacements. So, as it is shown in Figure 9, the equivalent load due 
to an imposed displacement can be computed as 

 



S.R. Sabbagh Yazdi , M. Bayatlou /Comp. Meth. Civil Eng., Vol. 3, 1 (2012) 63-76 

74 

 ܲ ൌ െ൫ܴ௥௜௚௛௧ ൅ ܴ௟௘௙௧൯ ൌ െܪ൫െ߬௫௬
௥௜௚௛௧ ൅ ߬௫௬

௟௘௙௧൯ ൌ ൫߬௫௬ܪ
௥௜௚௛௧ െ ߬௫௬

௟௘௙௧൯ . (43)
  

 
Figure 9. Evaluating equivalent load by using the internal stresses caused by an imposed 

displacement. 
 
Through the numerical analysis and by the incremental displacement imposing, the cells of 

the mesh start to crack or crush and so their modulus of elasticity decrease. As shown in 
Figure 10, this reduction could represent the area of damaged material. 

 
Figure 10. Gradual decrease of modulus of elasticity (from sample a to d) which represents the 

evolution of damage through the concrete beam. 
 

The accuracy of the developed model is assessed by comparing the numerical and 
experimental envelope curve of monotonic load versus crack mouth opening displacement 
(CMOD) (see Figure 11). The maximum error of the computed results are calculated by 
evaluating the strain energy (integrating the CMOD curve as 0.4154) and comparing with 
integration of corresponding experimental measurement curve (0.4413), as  

 
ݎݎܧ ൌ

|0.4154 െ 0.4413|
0.4154 ൌ 6.02% (44)
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Figure 11. Comparison of numerical and experimental load–CMOD curve of notched concrete bean 

under three points bending. 
 
 

5. Conclusion 
 

In this paper, the vertex based Galerkin finite volume method (GFVM) for iterative 
solution of the two dimensional Cauchy equations is introduced and combined with the 
smeared rotating crack method (SRCM) in order to predict the nonlinear behavior of cracked 
concrete structures in equilibrium conditions.  

The process of degradation caused by the incremental displacement imposing is simulated 
by reduction of modulus of elasticity of the cracked or crushed concrete cells (triangular 
elements). 

The accuracy and performance of the developed GFVM solver is assessed by modeling a 
notched (cracked) beam under three point bending and then comparing numerical results with 
the reported experimental measurements.  

The mesh refinement near a notch (crack) at the concrete beam is performed by adapting 
an unstructured rectangular mesh which the size of its cells were modified in accordance with 
the zone of stress concentration.  

The computational results demonstrate that the introduced GFVM solver which considers 
two different sets of nonlinear stress–strain curves for handling the behavior of damaged 
concrete in both tension and compression can produce promising results. 

It can be stated that, the present shape function free computational model solves stress and 
deformation of complicated problems of concrete structures without any matrix 
manipulations. The developed GFVM solver presents stable solution procedure with no 
artificial damping mechanism requirement and produces acceptable results.  

The light computational work load of the GFVM iterative solver and its ability to deal 
with unstructured meshes make it suitable for applying to dynamic analysis of the concrete 
structures with complex geometrical features of the real world problems. 
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