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Abstract
The isogeometric analysis is increasingly used in various engineering problems. It is based on Non-Uniform

Rational B-Splines (NURBS) basis function applied for the solution field approximation and the geometry
description. One of the major concerns with this method is finding an efficient approach to impose essential
boundary conditions, especially for inhomogeneous boundaries. The main contribution of this study is to use the
well-known Lagrange multiplier method to impose essential boundary conditions for improving the accuracy of
the isogeometric solution. Moreover, Dirichlet boundary conditions on the derivatives of the solution field
(which are not directly defined as independent degrees of freedom) can be treated easily. The Lagrange
multipliers must be interpolated on a set of boundary points. Among the different available choices for the
boundary interpolation points, the Greville abscissas are considered in this work. Several plate problems have
been solved, which demonstrate significant improvement in accuracy and rate of convergence in comparison
with the direct imposition of essential boundary conditions.

Keywords: Isogeometric analysis; NURBS; Essential boundary condition; Lagrange multiplier method;
Kirchhoff plate; Greville abscissas.

1. Introduction

Isogeometric Analysis (IGA) has been developed [1] with the aim of integrating Non-
Uniform Rational B-Splines (NURBS) based CAD into the finite element analysis. One of
the main ideas in developing isogeometric analysis has been to prevent time-consuming data
conversion between CAD systems and the finite element analysis (FEA) in engineering
problems. IGA is based on Non-Uniform Rational B-Splines (NURBS) basis function applied
for both the solution field approximation and the geometry description. Therefore, CAD and
FEA can be unified efficiently in one package. This leads to the ability of modeling complex
geometries accurately. Moreover, simple and systematic refinement strategies, exact
representation of common engineering shapes, robustness and superior accuracy can be
achieved in comparison with the conventional finite element method. Accordingly, the
isogeometric analysis is expected to become a powerful computational approach in the
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analysis of various engineering problems; as it has already been applied to structural
problems, fluid mechanics, fluid-structure interaction, structural optimization, etc. [1-5]. In
spite of important efforts dedicated to IGA, there are still many aspects that require further
investigation. For instance, one of the key challenges with IGA is the imposition of essential
boundary conditions. In isogeometric analysis, due to the non-interpolatory nature of NURBS
basis functions, the kronecker-delta property is not satisfied. Therefore, similar to many
meshfree methods such as EFG [6], RKPM [7] or SPH [8], imposition of essential boundary
conditions in IGA is not a straightforward task. To impose the essential boundary conditions
in numerical methods with non-interpolatory basis function, several strategies have been
proposed [9]. These strategies can be classified into two categories [9]: 1) Methods based on
a modified weak-form equation such as the Lagrange multiplier method [6], penalty method
[10] and the Nitsche’s method [11,12], 2) Methods based on a modified form of basis
functions in order to reproduce the interpolation feature (see [13,14]). Embar et al. [15]
employed the Nitsche’s method to impose essential boundary conditions in spline based finite
element method and second- and fourth-order boundary-value problems. They approximated
the solution field using B-splines and the geometry was interpolated using bilinear
Lagrangian shape functions for the interior elements and bicubic Lagrangian shape functions
for the boundary elements. Nitsche’s method is a variationally consistent and stabilized
penalty method. One of the major disadvantages of this method is that the stability conditions
for the system of equations must be set for each individual problem. Such stability parameters
in the Nitsche's weak form are evaluated by solving a local generalized eigenvalue problem
on the Dirichlet boundary. Wang et al. [16] improved the imposition of essential boundary
condition in IGA using the transformation technique. In their proposed method, a relation
between control variables (degrees of freedom defined on control points) and the collocated
nodal values at the essential boundary is obtained. By using open knot vectors in the
transformation method, the NURBS basis functions corresponding to interior control points
vanish at the boundaries and the control points can be simply separated to interior control
points and boundary ones. Therefore, the approximation of solution field variable can be
expressed as a combination of interior and boundary control variables. Then, by collocation
of solution field variable in a set of boundary nodes, the boundary control variables can be
purely related to their physical values at the essential boundary. Costantini et al. [17] applied
the quasi-interpolation method to impose Dirichlet boundary conditions in isogeomtric
analysis based on generalized B-splines, avoiding interpolation of inhomogeneous essential
boundary data in the approximation space which was a global approach and required solving
a linear system of equations. The quasi-interpolation technique is a local approach and while
it does not require solution of large “global” linear systems, it provides the same level of
accuracy [17-25].

Since the Lagrange multiplier method is straightforward to implement and does not need
separation of interior and boundary control points [9] and based on a similar approach for 2D
continuum problems [26], it has been selected for improving the imposition of essential
boundary conditions in IGA analysis of plates.

This paper is organized as follows. In Section 2, the NURBS basis function is briefly
reviewed. In addition, a general formulation of NURBS-based isogeometric analysis is
presented. Then, imposition of essential boundary conditions in the isogeometric analysis
using the Lagrange multiplier method is discussed in Section 3. In Section 4, results of the
numerical simulations of several problems are discussed and the efficiency of the proposed
approach is assessed by comparing with available reference results.
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2. NURBS-based isogeometric analysis

The concept of isogeometric analysis, which has been recently proposed by Hughes et al.
[1], is to apply the same basis functions which are used to accurately describe the geometry
for the approximation of the physical variables. Since NURBS basis functions have become
the standard basis for describing and modeling the geometry in CAD and computer graphics,
they are used for describing both the geometry and the solution space.

2.1 NURBS basis function

NURBS are a generalization of piecewise polynomial B-spline curves. The B-spline basis
functions are defined in a parametric space on a knot vector  . A knot vector in one
dimension is a non-decreasing sequence of real numbers:

 1 2 1     , , ..., n p (1)

where i is the thi knot, i is the knot index, 1, 2,..., 1i n p   , p is the order of the B-spline,
and n is the number of basis functions. The half open interval  1,i i   is called the thi knot
span and it can have zero length since knots may be repeated more than once, and the interval

1 1,     n p is called a patch. In the isogeometric analysis, always open knot vectors are
employed. A knot vector is said to be open if it has 1p  repeating knots at the two ends.

With a certain knot span, the B-spline basis functions are defined recursively as,
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where 1, 2,...,i n .
A B-spline curve of order p is defined by:
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where , ( )i pN  is the thi B-spline basis function of order p and P are control points, given in
d-dimensional space R d . 1-D B-splines basis functions which are built from open knot
vectors, are interpolatory at the ends of parametric space. Figure 1 shows the quadratic B-
spline basis functions with the interpolation feature at the ends of parametric space. In two
dimensions, B-spline basis functions become interpolatory at the corners of the patches.
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Figure 1. Quadratic basis functions for an open knot vector  0,0,0,0.2,0.4,0.6,0.8,1,1,1  .

The non-uniform rational B-spline (NURBS) curve of order p is defined as:
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Here ,i pR is the NURBS basis function, iP is the control point and iw is the thi weight that

must be non-negative. In the two dimensional parametric space  20,1 , NURBS surfaces are

constructed by tensor product through knot vectors  1 2 1, , ..., n p      and

 1 2 1, ,..., m q      . It yields to:
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where ,i jP is the  ,i j -th of n m control points, also called the control mesh. The interval

1 1,     n p × 1 1,     m q is a patch and   1 1, ,     i i j j is a knot span. ,
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The derivative of ),(,
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jiR with respect to  is derived by simply applying the quotient

rule to (8):
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The domain of problem is divided into patches and each patch is divided into knot spans or
elements. Patches play the role of sub-domains within which element types and material
models are assumed to be uniform [1]. Nevertheless, many complicated domains can be
represented by a single patch.

For more details on NURBS, refer to [18].

2.2 NURBS based isogeometric analysis formulation

In an isogeometric approach, the discretization is based on NURBS basis functions.
Geometry and solution fields are approximated as,
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where 0 , 1   and  Tx yx .    1 1enn p q    is the number of nonzero basis

basis functions for a given knot span (element). iR and  Tx y
i i iP PP are the i -th

NURBS basis function and control point, respectively.
iu is the i -th solution field value at the control points, which are also called a control

variable.

2.2.1 Kirchhoff plates

Plates are geometrically similar to 2D solids with the difference that forces are applied
perpendicular to the plane of plate (see Figure 2). Therefore, a plate experiences bending and
deflection w in the z direction; both function of position x and y . The stress zz in a plate
is assumed to be zero. The Kirchhoff plate theory, also called the classic plate theory (CPT),
assumes that normals to the neutral surface of the undeformed plate remain straight and
normal to the neutral surface during the deformation/bending.

Figure 2. Plate subjected to transverse loading.
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The strong form of governing equation for a CPT problem and corresponding boundary
conditions can be written as

4

0

 
qw

D
in  (14)

σn t on t (15)
w w on u (16)

where  denotes the domain of the problem, w is the deflection of the plate and q is

uniform load.
3

0 212(1 )
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
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is the bending stiffness of the plate, where E , h and  are

the Young’s modulus, plate thickness and Poisson's ratio, respectively. t is the prescribed
boundary forces on the natural boundary and w is the prescribed displacement on the
essential boundary.

In equation (16), w is a vector defined as w Q w , where Q is defined as
2
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for simply supported and clamped boundaries, respectively.

The weak form of equation (14) can be written as,
0

t
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where ε p and σ p are the pseudo-strain and the pseudo-stress vectors, respectively and u is the
displacement field of the Kirchhoff plate [19],
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The pseudo-strain and pseudo-stress (per unit length) are defined as,
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The solution field (deflection) can be approximated by equation (13):
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where iw is i -th component of the vector of control variables w obtained by solving the
following discretized equilibrium equation,
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Kw = f (23)

The stiffness matrix K and the force vector f are given in equations (24) and (25),
respectively.
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3. Imposing essential boundary conditions using the Lagrange multiplier method

Imposing essential boundary conditions in numerical methods that do not possess the
Kronecker delta property is not usually straightforward. Since an isogeometric analysis uses
NURBS basis functions that do not satisfy the Kronecker delta property, this method suffers
from this drawback. It is well worth noting that direct imposition of homogeneous essential
boundary conditions to the control variables, as discussed in [1], has no difficulty, but
imposing inhomogeneous essential boundary conditions needs new developments [1].

It should be noted that the present isogeometric formulation based on Kirchhoff plate
theory is rotation-free. In other words, only the deflections of the plate are degrees of
freedom and rotations can be calculated as derivatives of deflection but are not degrees of
freedom [1]. Therefore, rotational boundary conditions need to be imposed by an appropriate
approach.

For these reasons, the Lagrange multiplier method is employed in this study as a scheme
for treatment of essential boundary conditions.

3.1 Kirchhoff plates

Similar procedure is utilized for adopting the Lagrange multiplier method in analyzing thin
plates. The essential boundary condition (equation (16)) is converted into the following
integral form using the Lagrange multiplier λ :

( )


  λ w w
u

T d (27)

As a result, two additional boundary condition terms are added to the weak form of the
static elastic equilibrium equation of thin plates. This modified weak form can be written as

( ) 0
    

                ε σ u t λ w w w λ 
t u u

T T T T
p p d wqd d d d (28)

To obtain the discretized equation from this weak form, the Lagrange multipliers must be
discretized. As discussed in [9], among several possibilities for the choice of the interpolation
space for the Lagrange multiplier, the NURBS and Lagrange shape functions can be chosen.
In this study, Lagrange multipliers are interpolated on essential boundary using the Lagrange
shape functions. The Lagrange multipliers are defined at several essential boundary points.
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An appropriate choice for these desired essential boundary points is the Greville abscissas
[20], defined as,

1 ...
, 1,...,  

 
 i i pp

ig i n
p

(29)

where p is the NURBS order and n is the number of control points.
If the number of Lagrange multipliers is too large, the resulting system of equations can be

ill-conditioned, whereas for very small number of Lagrange multipliers, the essential
boundary condition cannot be imposed accurately. In fact, the interpolation space for
Lagrange multipliers and for the solution field variable must satisfy an inf-sup condition,
known as the Babuska-Brezzi stability condition [21,22], in order to ensure the convergence
of approximation [9].

Interpolating the Lagrange multipliers using 1D Lagrange shape functions on physical
boundary points corresponding to Greville abscissas, leads to








n

i
ii uSu

1
)()( (30)

where )(uSi is the 1D Lagrange basis function and n is the number of the essential
boundary points applied for this interpolation.

Substituting the deflection of the plate w from (22) into the weak form (28) leads to the
following discretized equations:

T
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K and f are the same as those defined in Eqs. (24) and (25), respectively. The nodal matrix
G ij and the vector qi are defined as,
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iS is defined in (3) and n is the unit normal to the essential boundary u .

4. Numerical simulations

In this section, several numerical problems are solved to illustrate the superior accuracy
and acceptable rate of convergence of the proposed approach in comparison with the direct
imposition of essential boundary conditions on control variables. In this study, direct
imposition of essential boundary conditions on the control variables, means that the function
of essential boundary condition is evaluated on the physical position of boundary control
points and the obtained values are assigned to the corresponding control variables. In all
examples, the number of Gauss points in each direction is considered max( 1,4)p , where
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p is the order of NURBS basis function. For the convergence study, h-refinement strategy
has been applied to the initial geometry of model. In each refinement step, knots are added to
the middle of knot spans.

First a number of rather simple 2D continuum problems are solved to evaluate the
performance of the Lagrange/IGA approach and then several bending problems are
simulated.

4.1 Laplace problem on a square domain

For the first example, the Laplace problem is solved on a unit square domain:
2

2

0
( ,0) sin( ) [0,1]
( ,1) (0, ) (1, ) 0

 
  
   

 x
u

u x x
u x u y u y

(36)

where 2 denotes the Laplacian operator. The analytical solution for this problem is:
( , ) [cosh( ) coth( )sinh( )]sin( )    exu x y y y x (37)

The geometry is constructed by a NURBS surface of order 3p for both directions with
unit weights. Initial discretized geometry is shown in Figure 3. The initial knot vectors in the
parametric space are  0,0,0,0,0.5,1,1,1,1 . To study the convergence of the numerical
approach, h-refinement strategy is employed and meshes with 16, 64, 256 and 1024 elements
are investigated (see Figure 4). The isogeometric solution and the absolute error for the
Lagrange multiplier method on a model with 256 elements are plotted in Figure 5. Results of
L2 and H1 error norms are shown in Figures 6 and 7 in terms of the maximum knot span
dimension h. As expected, a quartic convergence rate for the L2 error norm and a cubic rate
of convergence for the H1 error norm have been obtained by the Lagrange multiplier method,
which are comparable with the quadratic rate in both cases for the direct imposition of
boundary conditions; showing the superior accuracy and optimal rate of convergence of the
present approach. This problem was also solved by Embar et al. [15] with the Nitsche’s
method and spline-based finite elements. As shown in Figures 6 and 7, the present Lagrange
multiplier method provides more or less the same level of accuracy and the convergence rate
as the Nitsche’s approach.

Figure 3. Initial discretized geometry: (left) control mesh; (right) physical mesh
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Figure 4. Physical meshes with 16, 64, 256 and 1024 elements for the convergence study

Figure 5. Isogeometric solution with 256 elements (Left) and absolute error (Right) based on the
Lagrange multiplier method

Figure 6. Comparison of  L2 error norm
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Figure 7. Comparison of H1 error norm

4.2 Potential problem on a quarter of an annulus

Consider a potential problem on a quarter of an annulus (Figure 8). The governing
equation and boundary conditions are given as follows:

2 0 in
. on

on

   
   
  

t

u

u s
n u t
u u

(38)

Where s is the source term. This problem has been also studied by Costantini et al. [17] for
B-spline and generalized B-spline basis functions. The exact solution for this problem is
obtained as,

2 2( , ) sin(( 1) / 5)  u x y x y (39)

Prescribed Dirichlet boundary conditions are calculated from the exact solution and
imposed on all the boundaries of the domain. In this problem, no traction is considered. The
source term s can also be derived from the exact solution (39). In order to compare with the
quasi-interpolation method [17], the initial geometry is constructed by tensor product of
quadratic NURBS basis functions, as shown in Figure 9. The initial parametric space is given
by two knot vectors of the same form: 0,0,0,0.5,1,1,1 . Using the h-refinement strategy,
meshes with 4, 16, 64, 256 and 1024 elements are considered for the convergence study (see
Figure 10). The isogeometric solution with 256 elements and based on the Lagrange
multiplier method is depicted in Figure 11. The absolute error distribution is also plotted in
Figure 11. The discrete L2 error norm, computed on a 100×100 grid, is presented in Table. 1
and Figure 12 and compared with the results of quasi-interpolation and direct methods. It can
be clearly observed from Figure 12 that the Lagrange multiplier method presents superior
accuracy and higher rate of convergence in comparison with the direct method. Also the
results of proposed approach are slightly better than those obtained by the quasi-interpolation
method.
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Figure 8. Potential problem on a quarter of an annulus

(a) (b)
Figure 9. Initial geometry model: (a) control mesh; (b) physical mesh (elements)

Figure 10. Physical meshes with 4, 16, 64, 256 and 1024 elements used for convergence study

Table 1. Comparison of discrete L2 error norm
Num. of elements per side IGA-Direct IGA-Lagrange IGA-Quasi interpolation [17]

2 23.910E+00 1.1890E+00 2.8273E+00
4 7.0331E+00 4.9354E-01 5.7032E−01
8 1.8218E+00 4.7802E-02 5.3653E−02

16 4.6078E-01 5.2440E-03 5.5270E−03
32 1.1563E-01 6.1690E-04 6.3060E−04



N. Valizadeh et al /Comp. Meth. Civil Eng., Vol. 3, 2 (2012) 47-66

59

Figure 11. Isogeometric solution (Left) and absolute error (Right) on a model of 256 elements based
on the Lagrange multiplier method

Figure 12. Comparison of L2 error norm

4.3 An infinite plate with a central circular hole

The third example is a plane stress  infinite tensile plate with a central circular hole, as
depicted in Figure 13. Geometric and mechanical parameters are assumed as: radius of the
circular hole 1R , plate width 4L , Young’s modulus 510E , Poisson's ratio 0.3
and traction 10xT ,.

Figure 13. Infinite plate with a central circular hole
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Only one quarter of a circular finite domain of the problem is simulated (see Figure 13). In
order to represent the infinite plate, the analytical displacements are imposed as the essential
boundary conditions on the boundary of the circular domain: [23]
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where  is the shear modulus.
Two knot vectors of the same form 0,0,0,1,1,1 are used to define the initial parametric

space. Meshes with 4, 16, 64, 256 and 1024 elements are considered for the convergence
study (see Figure 14). The L2 and H1 error norms are plotted in Figures 15 and 16, which
show that near cubic and quadratic convergence rates for the L2 and H1 error norms are
obtained for the Lagrange multiplier method. In addition, higher solution accuracy is obtained
by the present method.

Figure 14. Physical meshes with 4, 16, 64, 256 and 1024 elements
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Figure 15. Comparison of L2 error norm

Figure 16. Comparison of H1 error norm

4.4 Static bending analysis of rectangular thin plates

In this example, application of Lagrange multiplier method in isogeometric analysis is
investigated for thin plate problems which boundary conditions are defined on both the
solution field and its first or second derivative (see Sec. 3.1). For this purpose, a thin plate
under a concentrated load is modeled with different boundary conditions: (SSSS) simply
supported boundary conditions on all sides, and (CCCC) clamped boundary conditions on all
sides. The following parameters are assumed: Length of the plate in x-direction 0.6xL m
for rectangular plates, 0.6x yL L m  for square plates, 0.001h m plate thickness,

9 210E N m Young's modulus, 0.3  Poisson's ratio. The concentrated load 100P N is
applied at the center of the plate. The center deflection of the plate maxw is calculated and

normalized using the following coefficient max 0
2
x

w Dw
PL

 .
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Cubic order NURBS basis functions with 16, 64, 256 and 1024 elements have been
investigated and the results for a square plate with simply supported and clamped boundary
conditions are shown in Table 2. It can be seen that the results of the proposed method
quickly converge to the analytical solution.

Tables 3 and 4 present the results of the proposed method with different width/length ratios
for (SSSS) and (CCCC) boundary conditions, respectively. These results are obtained by
cubic NURBS basis function with 64 elements and 121 control points. Again, a good
agreement between IGA and analytical solution can be found.

Table 2. Dimensionless central deflection of square plate under concentrated load
Present Method (IGA) Analytical

Solution [24]Number of
Elements 4×4 8×8 16×16 32×32

SSSS 0.0114 0.0116 0.0116 0.0116 0.0116
CCCC 0.0054 0.0056 0.0056 0.0056 0.0056

Table 3. Dimensionless central deflection of rectangular plates with different aspect ratios under
concentrated load for simply supported boundary condition (p=q=3, 64 elements, 121 control points)

y xL L 1.0 1.2 1.4 1.6 1.8 2.0

w (IGA) 0.0116 0.0135 0.0148 0.0156 0.0161 0.0164
w (Analytical

Solution)
0.0116 0.0135 0.0148 0.0157 0.0162 0.0165

Table 4. Dimensionless central deflection of rectangular plates with different aspect ratios under
concentrated load for clamped boundary condition (p=q=3, 64 elements, 121 control points)
y xL L 1.0 1.2 1.4 1.6 1.8 2.0

w (IGA) 0.0056 0.0064 0.0069 0.0070 0.0071 0.0071
w (Analytical

Solution)
0.0056 0.0065 0.0069 0.0071 0.0072 0.0072

4.5 Elliptical plate under uniform load

As the last example, a fully clamped elliptical plate subjected to a uniform load is
investigated. In this problem, Dirichlet boundary conditions are defined on both the solution
field and its first derivative. The radii of the elliptical plate are a = 5 m and b = 2.5 m,
respectively. Other parameters are assumed as: plate thickness 0.001h m , Young's
modulus 9 210E N m , Poisson's ratio 0.3  , and the uniform load 100q N . The
deflection of the plate computed by IGA is normalized using the following coefficient

08wDw
q

 . There is an exact solution for this problem which is obtained by the following

formula [25]:

(42)

where q is the uniform load.
To model the geometry of this example, we use a very coarse mesh as the initial geometry

which is constructed by a NURBS surface of order 2p in both directions. This initial
discretized geometry is shown in Figure 17. The initial knot vectors in the parametric space

4 4 2 2 2 2 2

4 4 2 2
0

( 1)
8 3 3 2
q a b x a y bw
D a b a b

 


 
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are  0,0,0,1,1,1 . Employing h-refinement and p-refinement procedures in IGA, the desired
mesh can be constructed from this coarse mesh. To study the convergence of the numerical
approach, meshes with 16, 64, 256 and 1024 elements (see Figure 18) and with different
order of NURBS (from quadratic to quintic) are investigated. The results are given in Table 5
which shows finer the mesh or higher the NURBS order, more accurate the results, as
expected. The L2 error norm for the plate deflection is plotted in Figure 19 which shows sub-
optimal convergence for quadratic NURBS, almost optimal convergence for cubic NURBS
and super-optimal convergence for quartic and quantic NURBS is obtained using the
Lagrange multiplier method. The IGA solution and the absolute error distribution for cubic
NURBS with 64 elements are also presented in Figure 20.

(a)

(b)
Figure 17. Initial discretized geometry: (a) control mesh; (b) physical mesh

Figure 18. Physical meshes with 16, 64, 256 and 1024 elements for the elliptical plate
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Table 5. Dimensionless central deflection of CCCC elliptical plate under uniform load
Num. of
Elements Order of NURBS basis function Exact Solution

(Equation 4.8)2 3 4 5
16 8.7314 10.6106 10.5941 10.5934

10.5932
64 10.0775 10.5948 10.5932 10.5932

256 10.4654 10.5933 10.5932 10.5932
1024 10.5613 10.5932 10.5932 10.5932

Figure 19. Comparison of L2 error norm for different order of NURBS basis functions

Figure 20. Isogeometric solution for cubic NURBS basis function with 64 elements based on the
Lagrange multiplier method (Left) and the absolute error (Right)

5. Concluding remarks

In this paper, an efficient technique based on the Lagrange multiplier method is suggested
for imposition of essential boundary conditions in NURBS-based isogeometric analysis. In
this approach, the Lagrange multipliers are defined on a set of physical boundary points. In
general, these interpolation points are Griville abscissas on the essential boundary. Among
the various possible choices of the interpolation space for the Lagrange multipliers, the
Lagrange shape functions have been adopted. The results of several simulations have
illustrated that excellent solution accuracy and rate of convergence are obtained by applying
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this approach. It also offers a far higher rate of convergence where it is compared with the
direct imposition of essential boundary condition.
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