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Abstract

This paper deals with local buckling analysis of rectangular functionally graded material plates using finite
strip method and based on classical plate theory. The modulus of elasticity of the plate is assumed to vary
according to a power-law distribution in terms of the volume fractions of the constituents. The principle of
minimum total potential energy is employed to obtain stiffness and stability matrices of functionally graded plate
while a matrix eigenvalue problem is then solved to find the critical stresses of rectangular plates subjected to
various types of loading including uniform and non-uniform uniaxial loadings and biaxial uniform loading. The
accuracy of the proposed model is validated in which the obtained results are compared with those reported
elsewhere. Furthermore, a comprehensive parametric study is performed to investigate the effects of various
parameters such as boundary conditions, power law index, aspect ratio and type of loading on the local buckling
coefficient of functionally graded material plates whilst the developed finite strip method is also employed to
study the buckling behaviour of long stiffened functionally graded plates subjected to uniform uniaxial loading.

Keywords: Functionally graded material; Local buckling; Stiffened plates; Finite strip method

1. Introduction

New composite materials have been increasingly developed during last decades.
Functionally graded materials (FGMs) were first introduced in Japan in 1984 [1]. FGMs are
known as advanced high-performance and heat resistant materials which are able to withstand
against ultra-high temperatures and extremely large thermal gradients that are usually
developed in spacecrafts and nuclear plants. FGMs are microscopically inhomogeneous
materials in which the mechanical and thermal properties vary smoothly and continuously
from one surface to the other surface through the thickness. This is achieved by gradually
varying the volume fraction of the constituent materials [2].
Buckling behaviour is one of the most important phenomena in the design of structural
components such as plates. The buckling of rectangular functionally graded material plates
has been investigated during last decades. Reddy [3] presented a finite element formulation
for linear and nonlinear thermo-mechanical response of FGM plates employing higher order
shear deformation theory. Vel and Batra [4] found an exact solution for the thermoelastic
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deformation of FGM thick rectangular simply supported plates. Suitable temperature and
displacement functions that identically satisfied boundary conditions at the edges were used
to reduce the partial differential equations governing the thermo-mechanical deformations to
a set of coupled ordinary differential equations in the thickness coordinate, which were then
solved by employing the power series method while the effective material properties at a
point were estimated by either the Mori-Tanaka or the self-consistent schemes.  Javaheri and
Eslami [5, 6] investigated the buckling of the fully simply supported FGM plates subjected to
uniform in-plane compressive and thermal loads using variational approach which was based
on classical plate theory. They employed equilibrium and stability relationships to study the
buckling behaviour of fully simply supported functionally graded material plates while
thermal buckling of FGM plates was reported in the other research work using higher order
shear deformation plate theory [7]. Buckling analysis of fully simply supported rectangular
thick functionally graded plates under mechanical and thermal loads was presented by
Samsam Shariat and Eslami [8] where it was assumed that the plate was under three types of
mechanical loadings including uniaxial compression, biaxial compression, and biaxial
compression and tension as well as two types of thermal loadings including uniform
temperature rise and non-linear temperature rise through the thickness. The equilibrium and
stability equations were derived using the third order shear deformation plate theory. The
effect of imperfection on the buckling load of fully simply supported FGM plates subjected to
in-plane compressive and thermal loadings was taken into consideration in the other studies
using the classic plate theory [9-11].

The mechanical and thermal buckling analysis of functionally graded ceramic-metal plates
with arbitrary geometry was presented by Zhao et al. [12] in which the first-order shear
deformation plate theory, in conjunction with the element-free kp-Ritz method, was
employed. The displacement field was approximated in terms of a set of mesh-free kernel
particle functions while the bending stiffness was evaluated using a stabilised conforming
nodal integration technique, and the shear and membrane terms were computed using a direct
nodal integration method to eliminate the shear locking effects of very thin plates.  Bodaghi
and Saidi [13] presented an analytical approach for buckling analysis of thick functionally
graded rectangular plates with various boundary conditions in which the coupled governing
stability equations of FGM plates were converted into two uncoupled partial differential
equations in terms of transverse displacement and boundary layer function. The Levy-type
solution was employed to solve these equations for functionally graded rectangular plates
with two opposite edges simply supported. Hoang and Nguyen [14] presented a simple
analytical approach for the stability of functionally graded plates under in-plane compressive,
thermal and combined loads. Equilibrium and compatibility equations for functionally graded
plates were derived by using the classical plate theory taking into account both geometrical
nonlinearity in von Karman sense and initial geometrical imperfection whilst the resulting
equations were solved by Galerkin procedure to obtain explicit expressions of post-buckling
load-deflection curves.

This paper addresses the buckling behaviour of rectangular functionally graded plates using
finite strip method (FSM). In comparison to other numerical methods such as finite element
method, the FSM, which was first introduced by Cheung [15], provides more efficient
formulations for investigation of plate buckling behaviour under different load conditions.
Ghannadpour and his colleagues used the FSM to investigate the buckling of rectangular
functionally graded plates under three types of mechanical loadings, namely; uniaxial
compression, biaxial compression, and biaxial compression and tension [16]. These authors
also investigated thermal buckling of functionally graded plates using FSM [17]. Recently,
the second author investigated mechanical buckling and free vibration of thick functionally
graded plates resting on elastic foundation using the higher order B-spline finite strip method
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[18]. However, hitherto its direct application to the local buckling behaviour of rectangular
stiffened functionally grade material plates has not been investigated. Consequently the semi-
analytical finite strip method is employed in this paper to investigate the buckling behaviour
of FGM plates subjected to uniform and non-uniform uniaxial compressive loading, and
uniform biaxial loading under different boundary conditions. Moreover, the presented
methodology is used to study the local buckling of longitudinally stiffened functionally
graded plates subjected to uniform uniaxial loadings.

2. Theory

2.1 Material modelling

FGMs are composed of a mixture of ceramic and metal or a combination of different
metals by gradually varying the volume fraction of the constituent materials. In order to
obtain the effective mechanical and thermal properties of FGM plate, a simple rule of mixture
based on power-law distribution is assumed for which the material properties vary through
the thickness of the plate as

  ,)( VPPPzP mcm  (1)

where subscripts m and c refer to the metal and ceramic constituents, respectively, P denotes
a property of the material and z is measured over the thickness of the plate. In Eq.(1), V is the
volume fraction of ceramic phase and is expressed by a power-law distribution such that

,
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in which h is the thickness of the plate, n is the power law index which is always positive and
z is measured from the geometric centroid of the plate in which ( 2) ( 2)h z h    . Figure

1 shows the variation of ceramic volume fraction through the thickness of the plate for
different volume fraction exponents. It can be seen that the plate is fully ceramic when n = 0
while the composition of ceramic and metal takes a linear shape when n = 1.
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Figure 1. Variation of volume fraction over the thickness for different values of power index n
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2.2 Differential equations of functionally graded plates

A rectangular element of a thin flat plate is depicted in Figure 2.
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Figure 2. Internal forces and moments of the plate element

The in-plane forces and moments are also shown in this figure. According to the classical
plate theory (CPT), the following equilibrium equations are expressed for homogeneous
plates [5],
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where Nxx, Nyy, and Nxy are in-plane edge loads, Mxx and Myy are bending moments about x and
y axes, respectively, Mxy is the twisting moment, zp is the external lateral load and w is lateral

displacement of the mid-plane of the plate. The magnitude of the in-plane forces and
moments can be obtained from
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It is worth noting that unlike homogeneous plates where the set of three equations (3) to (5)
are not coupled and could be treated independently, for functionally graded plates these
equations are coupled due to inhomogeneous behaviour of the material and should be solved
simultaneously.
The relationship between the stresses and strains may be expressed as
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in which E(z) is the modulus of elasticity of the FGM plate which is determined by power law
distribution given in Eq.(1) and  is the Poisson’s ratio which is assumed to be constant for
both materials [5-9]. According to CPT, the displacement field at an arbitrary point is
expressed by

( , , ) ( , ) , ( , , ) ( , ) , ( , , ) ( , )
w w

u x y z u x y z v x y z v x y z w x y z w x y
x y

 
    

 
(9)

The nonlinear strain-displacement relations, taking into account large rotations with small
strains, are determined from
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Substituting Eq. (10) into Eqs. (6) to (8) leads to the in-plane forces Nij and in-plane
moments Mij to be expressed as a function of displacement components. Equations (3) to (5)
can be then manipulated such that the differential equation of FGM plate is derived as
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which resembles the governing differential equation of homogeneous plate subjected to
distributed lateral load pz(x, y) as well as in-plane loads Nxx, Nxy and Nyy acting on the middle
surface of the plate. In Eq.(11) 2 is two-dimensional Laplacian operator, and
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where Ec and Em are modulus of elasticity of ceramic and metal, respectively.
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2.3 Solution procedure

The finite strip method, which is a well-known semi-analytical method, is employed in this
section to investigate the buckling behaviour of rectangular functionally graded plates with
different boundary conditions subjected to various types of in-plane compressive loading.
Figure 3a shows a single strip in rectangular coordinate system (X, Y, Z) with two nodal lines
i and j whilst the strip nodal degrees of freedom are shown in Figure 3b.

(a) (b)
Figure 3. A typical strip and degrees of freedom on its nodal lines

The deflection of the strip is defined as
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in which r is number of harmonic modes, Xq(x) is appropriate Hermitian shape function and
Yq(y) is qth mode of a trigonometric function and which are given in the Appendix.
Using Hermitian shape functions Eq. (16) may be written as
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in which ax / , a is width of the strip and q
iw , q

jw , q
i and q

j are deflections and rotations

of each nodal line corresponding to qth mode as shown in Figure 3b. Eq.(17) can then be
expressed in a vector form as
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and q , which is the displacement vector q related to mode q, is given by
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The plate curvature vector, κ , is derived by appropriate differentiation of displacement
field given by Eq. (18) so that
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which can be written in a matrix form by substituting Eq.(18) into Eq.(22) such that
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in which δand B are total displacement vector and curvature matrix of the strip respectively,
and Bq is curvature matrix corresponding to mode q which is given by
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where qY  and qY  are the first and second derivatives of Yq with respect to y, respectively.

The plate moment-curvature relationship is obtained from
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The principle of minimum total potential energy is employed to find the stiffness and
stability matrices of a typical strip. Strain energy of a strip, U, is defined as
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Substituting Eqs. (23) and (25) into Eq. (28) leads to the strain energy to be written in
terms of displacement vector of the strip such that
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The work done W due to in plane stresses acting on the edges of the strip shown in Figure 4
is determined by
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and the stress vector,σ, is defined as
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in which x, y and xy act on the boundaries of the plate as shown in Figure 4.
Substituting Eqs. (18) and (19) into Eq. (31) leads to N to be expressed as
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Figure 4. A typical strip subjected to bi-axial compression and shear loading

in which Sqx and Sqy are obtained from
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The total potential energy stored in the elastic body of the strip can be written as
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Equation (38) could be rearranged as
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  0δKK  G (41)

in which δ is the eigenvector and K and KG are the global stiffness and stability matrices of
the functionally grade plate, respectively, which are formed by assembling the stiffness and
stability matrices of the strips, Ke and e

GK , using equilibrium and compatibility equations
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   
b a

xjyxiij

e
yG yx

0 0

T
, ddSSK  (44)

and

   
b a

yjxyxiij

e
xyG yx

0 0

T
, ddSSK  . (45)

Similarly, the square sub-matrices of the stiffness matrix Ke can be given by

 
b a

ji
e
ij yx

0 0

T ddBBK D . (46)

The buckling equation can be finally formulated as

0 GKK (47)

which is solved to obtain the critical buckling load.

3. Illustration

3.1 Verification

The accuracy of the proposed finite strip method in the previous section is investigated in
this section and the obtained results are compared with those reported elsewhere. The local
buckling coefficient, k, is defined as

  
m

cr E

ha
k

2

22 /112







 (48)
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in which cr is the critical buckling stress, ν is the Poisson’s ratio, Em is the modulus of
elasticity of the metallic surface of the plate, and a and h are the width and thickness of the
FGM plate, respectively. The mechanical properties of the functionally graded materials are
assumed to be Ec=380 GPa (for alumina), Em=70 GPa (for aluminium) and  =0.3.
Table 1 shows the magnitudes of the critical buckling stresses of the simply supported square
FGM plates subjected to uniform uniaxial loading obtained from the proposed methodology
in comparison to those reported by Shariat et al. [9]. It can be seen that the finite strip method
developed in this paper can well describe the buckling behaviour of the simply supported
square FGM plates for different values of power law index n.

Table 1. Critical buckling stresses (MPa) of FGM plates with SSSS boundary conditions given by
proposed model in comparison to Ref. [9]

n = 0 n = 1 n = 3 n = 10

Proposed model 137.388 68.479 48.636 41.161

Shariat et al.’s model [9] 137.379 68.475 48.636 41.160

Table 1 shows that the magnitudes of critical stresses increase with the reduction of power
law index n, which indicates that a fully alumina plate (n = 0) is less prone to buckle in
comparison to a FGM plate.
Table 2 compares the magnitudes of the critical buckling stresses of the fully clamped square
FGM plates determined from the proposed model with those given by Wu et al.’s analytical
model in which finite double Chebyshev polynomials were employed [19]. To ensure that the
plate is enough thin such that the buckling occurs in the elastic region of the material, the
plate width to thickness ratio (a/h) was assumed to be 100. The results given by the proposed
finite strip method for different numbers of harmonic modes r are in a good agreement with
those given in the literature [19] as indicated in Table 2.

Table 2. Critical buckling stresses (MPa) of FGM plates with CCCC boundary conditions given by
proposed model (FSM) in comparison to Ref.[19]

Method n = 0 n = 1 n = 2 n = 5 n = ∞
FSM 5 strips, 1 mode 354.43 176.66 137.85 116.58 65.29

5 strips, 3 mode 347.66 173.29 135.22 114.35 64.04
5 strips, 5 mode 346.84 172.88 134.90 114.08 63.89

- Wu et al.’s model [19] 348.0 175.4 136 115.3 -

While the present paper addresses the local buckling behaviour of FGM plates, the
proposed formulations are enough generic such that they can be used to predict the local
buckling coefficients of homogenous plates (n = 0). Table 3 shows the magnitudes of local
buckling coefficients for rectangular homogenous plates with different aspect ratios subjected
to uniform uniaxial loading obtained from the finite strip method proposed in this paper in
comparison to those given in the literature [20]. It is worth noting that the plate was clamped
along loaded edges, and could be simply supported- simply supported (SS), clamped-clamped
(CC) or simply supported-clamped (SC) along both unloaded (longitudinal) edges. It can be
seen that a good agreement is achieved while the maximum error is less than 2.5%, and
consequently the accuracy of the developed model is validated.
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3.2 Numerical study

A comprehensive numerical study is presented in this section using the finite strip
formulations developed in Section 2 to investigate the elastic local buckling behaviour of
rectangular functionally graded material plates.  Unstiffened and stiffened Plates with
different boundary conditions under uniform and non-uniform uniaxial loadings as well as
under uniform biaxial loading are investigated.

Table 3. Local buckling coefficients of homogenous plates (n = 0) with clamped loaded edges given
by proposed model (FSM) in comparison to Ref.[20]

b/a Longitudinal edges boundary conditions
SS CC SC
FSM Exact

Ref. [20]
Error % FSM Exact

Ref. [20]
Error % FSM

0.4 27.12 27.12 0 27.99 - - 27.50
0.5 18.19 - - 19.36 19.2 0.83 18.69
0.6 13.38 13.38 0 14.91 - - 14.02
0.75 9.53 - - 11.69 11.4 2.54 10.40
0.8 8.73 8.73 0 11.12 - - 9.68
1.0 6.74 6.74 0 10.12 10.08 0.40 8.07
1.2 5.84 5.84 0 9.60 - - 7.57
1.25 5.71 - - 9.28 9.94 6.64 7.53
1.4 5.46 5.45 0.18 8.64 - - 7.41
1.5 5.38 - - 8.40 8.32 0.96 7.01
1.6 5.35 5.34 0.18 8.29 - - 6.72
1.75 5.29 - - 8.28 8.08 2.48 6.44
1.8 5.18 5.18 0 8.29 - - 6.37
2.0 4.85 4.85 0 7.88 7.88 0 6.23
3.0 4.41 4.42 0.23 7.41 - - 5.84

3.2.1 Unstiffened FGM plates subjected to uniform uniaxial compression

Figures 5 and 6 show the magnitudes of local buckling coefficient given by Eq. (48) for
fully simply supported (SSSS) and fully clamped (CCCC) rectangular FGM plates,
respectively, subjected to uniaxial uniform compression loading with different values of
power law index n respect to the aspect ratio b/a.

It can be seen that the values of buckling stresses increase with the reduction of volume
fraction exponent while higher values of local buckling coefficients are obtained for plates
with fully clamped boundary conditions. Also, it can be seen that likewise the homogeneous
plates, for a given value of n the magnitude of local buckling coefficient k does not
significantly vary when aspect ratio b/a is greater than 2.5. A similar behaviour is observed
when the boundary conditions along the longitudinal edges of the FGM plate are changed;
however as depicted in Figures 7 and 8, FGM plates with simply supported loaded edges (SS)
and simply supported-clamped unloaded edges (denoted as SC in Figure 7) are more prone to
buckle than the plates with simply supported loaded edges (SS) and clamped-clamped
unloaded edges (denoted as CC in Figure 8). Also Figures 5 to 8 indicate that the rate of
variation of local buckling coefficient k with power law index n become less as power law
index n increases. Furthermore, the accurate result of FGM plates tend to be less sensitive to
the variation of aspect ratio with the increase of power law index n, as the magnitude of local
buckling coefficient k becomes constant after lower values of b/a for higher values of n.
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Figure 5. Local buckling coefficients of FGM plates with SSSS boundary conditions subjected to
uniform uniaxial loading for different values of power law index n
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Figure 6. Local buckling coefficients of FGM plates with CCCC boundary conditions subjected to
uniform uniaxial loading for different values of power law index n

The effect of asymmetric longitudinal boundary conditions on the value of local buckling
coefficients of FGM plates with simply supported loaded edges under uniform uniaxial
loading is depicted in Figure 9. The magnitude of power law index n is assumed to be unity.
As expected, plates with higher rigidity along the longitudinal edges experience more values
of local buckling coefficient; Furthermore, it can be seen that a FGM plate with clamped-
guided longitudinal boundary condition (denoted as CG) needs four harmonic modes to get
the accurate result when b/a = 5 while an accurate result is achieved by using only one mode
for a FGM plate with simple supported-free longitudinal boundary conditions (denoted as
SF).
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Figure 7. Local buckling coefficients of FGM plates with SSSC boundary conditions subjected to
uniform uniaxial loading for different values of power law index n
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Figure 8. Local buckling coefficients of FGM plates with SSCC boundary conditions subjected to
uniform uniaxial loading for different values of power law index n

It can be seen that the type of boundary conditions along the loaded edges of FGM plate is
more significant for lower values of aspect ratio b/a for which regardless the loaded edges
boundary conditions, the value of local buckling coefficient tends to a constant value at
higher values of aspect ratio; however, the magnitude of this constant value depends
significantly on the boundary conditions along unloaded (longitudinal) edges of the plate, and
therefore plates with clamped-clamped (CC) unloaded edges experience higher values for
local buckling coefficient (k = 18.886 when b/a > 5) than plates with simply supported-
clamped (SC) or simply supported-simply supported (SS) unloaded edges (k = 14.644 and k =
10.824 for SC and SS plates, respectively) as depicted in Figures 11 and 12.

Figures 10 to 12 show the effect of the loaded edges boundary conditions on the magnitude
of local buckling coefficient of FGM plates subjected to uniform uniaxial loading when the
power law index is unity (n = 1).
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Figure 9. Local buckling coefficients of FGM plates (n = 1) with simply supported (SS) loaded edges
subjected to uniform uniaxial loading.
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edges subjected to uniform uniaxial loading
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longitudinal edges subjected to uniform uniaxial loading
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Figure 12. Local buckling coefficients of FGM plates (n = 1) with simply supported (SS) longitudinal
edges subjected to uniform uniaxial loading

3.2.2 Unstiffened FGM plates subjected to non-uniform uniaxial compression

The buckling behaviour of functionally graded material plates subjected to non-uniform
uniaxial loading is presented in this section in which FGM plates with different boundary
conditions are taken into consideration. Figures 13a and b show FGM plates that are
subjected to uniaxial triangular and pure bending loadings which are corresponding to = 0
and = -1 in Figure 4, respectively.

(a) (b)
Figure 13. Rectangular FGM plate subjected to (a) triangular loading (b) pure bending

The variations of the magnitudes of local buckling coefficients k with respect to aspect
ratio b/a for a linear functionally grade material plates (n = 1) subjected to triangular loading
( = 0) and bending moment ( = -1) are shown in Figures 14 and 15 in which the
longitudinal (unloaded) edges of FGM plate are assumed to be simply supported (SS) while
the loaded edges can be SS, SC or CC. It can be seen that in the same manner to plates
subjected to uniform uniaxial loading, the magnitude of local buckling coefficient is less
sensitive to the type of loaded edges boundary conditions when the value of aspect ratio
increases.
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Likewise to homogenous plates, FGM plates subjected to uniform loading are more prone
to buckle than plates subjected to triangular loading or pure bending, as depicted in Figure 16
for a fully simply supported FGM plate, which is due to the increase of the plate stiffness
caused by tensile stresses when  = -1. Furthermore, FGM plates subjected to pure bending
(= -1) need more harmonic modes to achieve the accurate result as shown in Figure 16.

3.2.3 Unstiffened FGM plates subjected to uniform biaxial loading

The effect of uniform biaxial loading on the buckling behaviour of unstiffened rectangular
FGM plates is investigated in this section. Figure 17a shows a FGM plate which is subjected
to uniform biaxial compression loading of 10y and 20x in y and x directions respectively.
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S. Sarrami-Foroushani, M. Azhari , M. M. Saadatpour / Comp. Meth. Civil Eng. 1 (2013) 1-24

18

5

20

35

50

65

80

95

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25

L
oc

al
 b

uc
kl

in
g 

co
ef

fi
ci

en
tk

Aspect ratio b/a

α = -1

α = 0

α = 1

Figure 16. Local buckling coefficients of fully simply supported FGM plates (n = 1) under different
types of uniaxial loading

(a) (b) (c)
Figure 17. Rectangular FGM plate subjected to (a) biaxial loading (b) uniaxial uniform loading in x
direction (c) uniaxial uniform loading in y direction

0y and 0x are critical buckling stresses due to uniform uniaxial loading as depicted in Figure
17 b and c. It is worth noting that since there is two stability matrices e

G,xK and e
G,yK , therefore

one of them is assumed as a known matrix and the other one is calculated by using Eq.(47).
Figure 18 shows the interaction curves for fully simply supported FGM plates subjected to
biaxial loading in which the ratio of width to thickness of plate (a/h) and the power law index
(n) are assumed to be 100 and 1, respectively. Positive and negative signs indicate the
compression and tension load cases, respectively.
As depicted in Figure 18, with a good approximation, 1 varies linearly respect to 2 when the
aspect ratio b/a is greater than or equal to 2 and 2 < 0. The magnitudes of critical buckling
stresses are shown in Table 4. It can be seen that for higher absolute values of 2, the
magnitude of aspect ratio has more significant effect on the critical value of 1.

1 0 y 

1 0 y 

2 0x 
2 0x 
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Figure 18. Interaction curves for FGM fully simply supported (SSSS) plate subjected to biaxial
loading

Table 4. Critical buckling stresses of FGM plates (n = 1) with simply supported boundary conditions
subjected to biaxial loading

b/a
0 ( )x MPa 0 ( )y MPa 2 1 ( )x MPa ( )y MPa

1 68.477 68.477 -1 1.8124 -68.477 124.108

-0.75 1.75 -51.358 119.835

-0.5 1.5 -34.239 102.716

-0.25 1.25 -17.119 85.596

0.25 0.75 17.119 51.358

0.5 0.5 34.239 34.239

0.75 0.25 51.358 17.119

2 106.99 68.477 -1 1.3472 -106.99 92.252

-0.75 1.293 -80.243 88.541

-0.5 1.1953 -53.495 81.851

-0.25 1.0977 -26.748 75.167

0.25 0.9023 26.748 61.790

0.5 0.78132 53.495 53.502

0.75 0.3907 80.243 26.751

3 190.21 68.477 -1 1.2587 -190.21 86.192

-0.75 1.2153 -142.658 83.22

-0.5 1.1543 -95.105 79.043

-0.25 1.0772 -47.553 73.763

0.25 0.9228 47.553 63.191

0.5 0.8264 95.105 56.589

0.75 0.6528 142.658 44.702

3.2.4 Longitudinally stiffened plates under uniform uniaxial loading

The finite strip method developed in Section 2 is used in this section to investigate the
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buckling capacity of longitudinally stiffened long FGM plates shown in Figure 19 which are
subjected to uniform uniaxial loading. As shown in Figure 19, the upper surface of the plate is
made of ceramic while it continuously changes through the thickness of the plate to the
metallic surface.

Figure. 19. Cross section of stiffened functionally graded material plate

It is assumed that the longitudinal stiffeners are made of the homogenous metallic material
used at lower surface of FGM plate. The critical buckling stress cr is obtained by using
Eq.(47) whilst the local buckling coefficients of plate and stiffener (which are denoted as kp

and ks respectively) are determined by

  
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pp
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ha
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

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in which Em is the modulus of elasticity of the FGM metallic surface, ap and hp are the width
and thickness of the plate and as and hs are the width and thickness of the stiffener, as shown
in Figure 19.

Three buckling modes are considered; Mode I: local buckling of the plate between the
stiffeners which occurs when the plate is reinforced by strong ribs; Mode II: local buckling of
stiffeners, and Mode III: overall buckling of the plate-stiffener system. In order to determine
the governing buckling mode, the ratio of the minimum half wave length to the width of plate
(denoted as Lmin/ap) as well as the ratio of the minimum half wave length to the width of the
stiffener (denoted as Lmin/as) are calculated and compared with the corresponding ratios for
the FGM plates with SSCC (simply supported loaded edges and clamped unloaded edges) and
SSSS (simply supported loaded and unloaded edges) boundary conditions as well as with the
corresponding ratios for homogenous plates (which represent the homogenous stiffeners) with
SSCF and SSSF boundary conditions. Table 5 indicates the magnitudes of Lmin/a and local
buckling coefficients k for both stiffener (n = 0) and FGM plate which are given by     Ref.
[20] and Figures 5 and 8 respectively.

Tables 6 and 7 show the local buckling coefficients kp and ks for stiffened functionally
graded material plates consisted of four equal plates with three stiffeners which are subjected
to uniform uniaxial loads at both simply supported loaded edges while the power law index n
is assumed to be 5 or ∞.
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Table 5. Local buckling coefficients of long FGM and homogenous plates

Stiffener (Metallic)FGM section

SSSFSSCFSSSSSSCCBoundaries

∞1.6510.64Lmin/b:

0.4641.281

46.98n= ∞k

5.74610.027n=20

7.14212.462n=5

10.82418.886n=1

14.07624.562
.

n=0.5

Table 6. Local buckling coefficients and buckling modes of stiffened FGM plates (n = 5)

s ph h s pb b min pL b
min sL b pK

sK Buckled

1/3

1

2

3

0.25 0.414 1.656 2.272 1.128 Stiffener

0.5 0.824 1.648 0.568 1.277 Stiffener

1 1.646 1.646 0.142 1.273 Stiffener

1.5

0.25

2.466

1.01

1.644

4.04

0.063

7.185

1.274

0.449

Stiffener

Both
0.5 1.044 2.088 4.161 1.040 Stiffener

1 1.82 1.82 1.116 1.116 Stiffener

1.5

0.25

2.652

0.828

1.768

3.312

0.510

9.392

1.147

0.147

Stiffener

Plate
0.5 1.272 2.544 8.373 0.523 Both

1 2.49 2.49 3.053 0.763 Stiffener

1.5

0.25

3.44

0.804

2.293

3.216

1.470

9.596

0.827

0.067

Stiffener

Plate
0.5 0.818 1.636 9.462 0.263 Plate

1 3.24 3.24 5.476 0.609 Stiffener

1.5 4.432 2.955 2.627 0.657 Stiffener

Table 7. Local buckling coefficients and buckling modes of stiffened FGM plates (n = ∞)

s ph h s pb b min pL b
min sL b pK

sK Buckled

1/3

1

2

3

0.25 0.428 1.712 2.197 1.236 Stiffener
0.5 0.832 1.664 0.565 1.271 Stiffener
1 1.656 1.656 0.141 1.268 Stiffener
1.5

0.25

2.48

0.976

1.653

3.904

0.063

4.628

1.276

0.289

Stiffener

Plate
0.5 1.184 2.368 3.280 0.820 Stiffener
1 1.952 1.952 1.025 1.025 Stiffener
1.5

0.25

2.7

0.812

1.8

3.248

0.498

5.336

1.121

0.083

Stiffener

Plate
0.5 0.848 1.696 5.190 0.324 Plate
1 2.801 2.801 2.698 0.674 Stiffener
1.5

0.25

3.86

0.8

2.573

3.2

1.309

5.393

0.736

0.038

Stiffener

Plate
0.5 0.808 1.616 5.355 0.149 Plate
1 0.804 0.804 5.362 0.596 Plate
1.5 0.8 0.533 5.363 1.341 Plate
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It can be seen from Table 6 that when 5.0/ ps hh and 5.0/ ps aa , the ratio of minimum

half wave length to the width of the plate is 818.0/min paL which is between the values of

0.64 and 1 given in Table 5 corresponding to the FGM plate, and the ratio of minimum half
wave length to the width of the stiffener is 636.1/min saL which is less than 1.65 given in

Table 5 corresponding to the stiffener. Therefore the buckling mode is Mode I in which the
plate buckles and the local buckling coefficient is 9.462 (which is between 12.462 and 7.142
given in Table 5). The comparison of Tables 6 and 7 indicates that when the magnitude of
power law index n increases, Mode I in which the FGM plate between the stiffeners buckles,
is more likely to occur which is due to the reduction of the stiffness of the FGM plate.

4. Conclusions

The buckling response of rectangular functionally graded plates was investigated using
finite strip method in which the effect of different parameters such as volume fraction
exponent, plate aspect ratio, loading type and boundary conditions on the buckling response
of the plate was comprehensively studied. It was observed that the critical buckling load of
functionally graded plate generally decreases with the increase of power law index.
Moreover, the accurate results for plates with lower rigidity along the longitudinal edges of
the plate are achieved by using less number of harmonic modes than plates with higher
rigidity. It was also found that the type of boundary conditions along the loaded edges of
FGM plate is more significant for lower values of aspect ratio b/a for which regardless the
loaded edges boundary conditions, the value of local buckling coefficient tends to a constant
value at higher values of aspect ratio.

Local buckling coefficients of long stiffened FGM plates were also obtained using the
developed finite strip method. The effect of volume fraction exponent n and ratio of stiffener
thickness to plate thickness on the buckling response was presented. It was observed that
stiffened FGM plates are prone to buckle in three modes including buckling of FGM plate,
buckling of stiffener and overall buckling of the plate-stiffener system. Furthermore it was
found that when the power law index n increases, the FGM plate between the stiffeners is
more prone to buckle which is due to the reduction of the stiffness of the FGM plate.
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Appendix-A:

Type A1 of Trigonometric shape functions:
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