
Online version is available on http://research.guilan.ac.ir/cmce

Comp. Meth. Civil Eng., Vol.4 No.1 (2013) 25-41
©Copyright by the University of Guilan, Printed in I.R. Iran

Validation and application of empirical Shear wave velocity models based
on standard penetration test

I. Shooshpashaa,*, H. Mola-Abasia, A. Jamalianb, Ü. Dikmenc, M. Salahib

aDepartment of Civil Engineering, Babol University of Technology, Iran
bDepartment of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, Iran

cDepartment of Geophysical Engineering, Faculty of Engineering, Ankara University,06100 Ankara, Turkey

Received 22 December 2012; accepted in revised form 28 October 2013

Abstract

Shear wave velocity is a basic engineering tool required to define dynamic properties of soils. In many
instances it may be preferable to determine Vs indirectly by common in-situ tests, such as the Standard
Penetration Test. Many empirical correlations based on the Standard Penetration Test are broadly
classified as regression techniques. However, no rigorous procedure has been published for choosing the
models. This paper provides 1) a quantitative comparison of the predictive performance of empirical
correlations; 2) a reproducible method for choosing the coefficients of previous empirical methods based
on the particle swarm optimization and 3) taking into account the polynomial correlation, a new model
proposed. Different empirical correlations are compared with different validation criteria. The best
performing empirical correlationsresult in a new modeland the unique coefficient associated determined by
particle swarm optimization concluded. The more recent correlation only marginally improves prediction
accuracy; thus, efforts should focus on improving data collection.

Keywords: Shear wave velocity; Standard penetration test; Least squares; Particle swarm optimization;
Validation.

1. Introduction

Shear wave velocity (Vs) is a principal geotechnical soil property for site response
analysis. It is helpful for estimating an earthquake site response, liquefaction potential, soil
density, site and soil classification since the dynamic soil modulus at small shear strain levels
is directly related to Vs. In many cases, difficulties in soil sampling, and high costs of
representative undisturbed specimens, in-situ investigations (e.g. seismic measurements) in
lieu of laboratory element testing are preferred to determine Vs directly. Using seismic
measurement techniques, a shear wave velocity profile can be established without boring and
penetration [1]. These non-destructive and non-intrusive features make Vs-based approach a
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potentially attractive alternative for characterizing liquefaction susceptibility in sandy soils
[2]. However, seismic in-situ tests are not always feasible, especially in urban areas due to
space constraints and noise level limits. Therefore, it is necessary to determine Vs indirectly
through methods such as the Standard Penetration Test (SPT) or the Cone Penetration Test
(CPT), which are commonly used for conventional geotechnical site investigations. In
geotechnical engineering, many soil parameters are associated with the Standard Penetration
Test blow counts (NSPT).

The interdependency of factors involved in such problems prevents the use of regression
analysis and demands a more extensive and sophisticated method resulted empirical
correlations (ECs). The particle swarm optimization (PSO) can be used to evaluate ECs
coefficients more accurate.In recent years, PSO has been used successfully in geotechnical
practices (e.g. Zhangetal.,[3], Khajehzadehet al., [4]).

This paper aims to 1) evaluate previous model coefficients; 2) quantify model
improvement and 3) examine a new and more reliable model. The outline of this paper as
follows,first reviews previous efforts in correlating NSPT and Vs, then a brief explanation of
the case histories under consideration. The phenomena of modeling with PSO are presented
andfinally the developed model is described and its accuracy is assessed through validation
analysis.

2. Background to previously proposed correlations

Some researchers have proposed correlations mostly between NSPT and Vs for different
soils, e.g. sand, silt and clay (Ohba and Toriuma, [5], Fujiwara, [6], Ohsaki and Iwasaki, [7],
Imai et al., [8], Seed and Idriss, [9], Imai and Tonouchi, [10], Jinan, [11], Athanasopoulos,
[12], Iyisan, [13]). Among of them, Imai and Yoshimura [14] studied 192 specimens and
proposed empirical relationships between Vs and soil index properties. Sykora and Stokoe
[15] asserted that geological age and soil type have little influence in predicting Vs. Jafariet
al., [16] presented a detailed historical review on statistical correlations between NSPT and Vs
for fine grained soils. Hasancebi and Ulusay [17] reported statistical correlations for sands
and clays. Ulugergerli and Uyanık [18] investigated statistical correlations using 327 samples
and delimited empirically a range for Vs values. Dikmen [19] investigated uncorrected SPT
data and presented a correlation for all soil types and more recently, Akın et al., [20] reported
statistical correlation between Vs and NSPT and proposed a site specific correlation as a
function of depth and NSPT valid up to a depth of 25 meters for alluvial and Pliocene type
soils.Others have developed correlations accounting for stress-corrected Vs, energy-corrected
NSPT (e.g. Pitilakiset al., [21], Kikuet al., [22]), NSPTand depth (e.g. Yoshida et al., [23],
Jamiolkowskiet al., [24]),  fines content (e.g., Ohta and Goto [25]) and vertical effective
stress (’v) (e.g. Brandenberget al., [26]). The Vs can also provide estimates of effective
stress (σ ) for clayey soils as suggested by Mayne and Martin[27]. Mayne [28] presented a
relationship for the total unit weight (γ) of saturated soils in terms of Vs and depth. Although
almost all of the foregoing studies have focused on relationships between uncorrected NSPT

and Vs, the effect of fines content in order to restrict the disadvantage of SPT usage in clay
soil type has been considered in this study. Presently existing20 empirical
relationshipsbetween Vs and NSPTfor all soil types in the literature is shown in Table 1.

3. Overview of database and case histories

A total of 42 CPT’s, of which 11 included seismic profiling by means of a pair of
geophones incorporated in the cone penetrometer, in combination with 30 exploration borings
were performed at selected sites in the city of Adapazarı (Figure 1). These sites were selected
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based on their performance after the devastating earthquake (Mw=7.4) occurred in August
17, 1999 in Kocaeli (Turkey) [29].

Table 1. Inventory of proposed correlations between uncorrected NSPT and Vs

Author(s) Proposed correlation
Ohba and Toriuma (1970) Vs = 84N0.31

Fujiwara (1972) Vs = 92.1N0.337

Ohsaki and Iwasaki (1973) Vs = 91.4N0.39

Imai and Yoshimura (1975) Vs = 76N0.33

Imai et al (1975) Vs = 89.9N0.341

Ohta and Goto (1978) Vs = 85.35N0.348

Seed and Idriss (1981) Vs = 61.4N0.5

Imai and Tonouchi (1982) Vs = 96.9N0.314

Sykora and Stokoe (1983) Vs = 100.5N0.29

Jinan (1987) Vs = 116.1(N+0.3185)0.202

Yoshida et al (1988) Vs = 83N0.25Z0.14 (Gravel type)
Jamiolkowski et al (1988) Vs = 69Z0.2N0.17(clay type)
Athanasopoulos (1995) Vs = 107.6N0.36

Iyisan (1996) Vs = 51.5N0.516

Kiku et al (2001) Vs= 68.3 N0.292

Jafari et al (2002) Vs= 27 N0.73 (clay type)
Hasancebi and Ulusay (2006) Vs = 90N0.309

Ulugergerli and Uyanık (2007) VSU = 23.291Ln(N)+ 405.61 (upper bound)
VSL = 52.9e−0.011N (lower bound)

Dikmen (2009) Vs = 58N0.39

Akın et al (2011) Vs = 59.44N0.109Z0.426

Figure 1. Location of in-situ tests in Adapazarı, Turkey [29]
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The epicenter was located near the city of Izmit, and fault rupture was physically visible
through most of the seismically impacted area (Marmara region); from Karamürsel to
Akyazı. In the vicinity of Adapazarı, with peak ground accelerations recorded at
approximately 0.4 g, as much as 70% of the buildings were subjected to large ground
settlements, liquefaction, or subsidence and sea water inundation [30]. As illustrated in
Figure 2, the southern shores of Izmit Bay are covered by Holocene deposits, these are
principally fine-grained sandy sediments which become finer (more silty and clayey)
northwards into the depths of Izmit Bay. Detailed geological and geotechnical properties of
the site isavailable in PEER [29].

Figure 2. Simplified geological map of Armutlu peninsula (after Goncuoglu [30])

The database covers a wide spectrum of soils and seismic parameters, including soil layer
depth (Z), energy corrected SPT blow count (N1)60, Fines Content (FC) (% ≤ 75μm) and Vs.
Further details regarding the measurement and interpretation of the foregoing parameters are
available in PEER and Hanna et al.,[29, 30]. A sample of database is shown in Table 2.
Figure3 illustrates the percent distribution of descriptive variable characteristics for all case
histories.

Table 2.Summary of in-situ tests performed in Adapazarı, Turkey [29]

Site Name Latitude (o) Longitude (o) CPT SCPT Boring & SPT SASW

Site A 40.77922 30.39487    

Site B 40.78513 30.40024    

Site C 40.78370 30.39221    

Site D 40.76929 30.40828    

Site E 40.77778 30.40518    

Site F 40.77148 30.40795    

Site G 40.77450 30.40896    

Site H 40.78419 30.41295    

Site I 40.77681 30.39223    

Site J 40.77518 30.41077    

Site K 40.77750 30.40340    

Site L 40.77855 30.40272    
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Figure 3. Distribution of descriptive variable characteristics for all case histories, a) Depth (m), b)
energy corrected SPT blow count (N1)60, c) Fine contents (%), d) Shear wave velocity (m/s)

4. Model Development

To investigate and compare the influence of parameters on the prediction of Vs, three
velocity models were considered. The first model (Model-1) was of a form similar to the
great majority of those listed in Table 1 in which the velocity was considered to be
independent of any soil parameters except NSPT, this model is of the form of:= (1)

The second model (Model-2), Vs was influenced by both NSPT and Z, and proposed as the
form, = (2)

In order to achieve better correlation, the third model (Model-3) presented that the Vs was
influenced by NSPT and Z and was of the form,= + + + + + (3)

Evaluation and validation of ai coefficients in the three distinct models constitutes the
main goal of this paper. Therefore, these models can be initially examined using the compiled
database and simple regression analyses, containing least square approaches. The results are
presented in Table 3.
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Table 3. Correlation coefficients for three distinct models

Model a1 a2 a3 a4 a5 a6

Model-1 108.5675 0.19849 - - - -
Model-2 95.7194 0.18281 0.10063 - - -
Model-3 116.8281 5.7117 1.0228 -0.0733 -0.0085 0.0575

5. Principles of modeling by using particle swarm optimization

In this section, the PSO method ofKennedy and Eberhart[31] reviewed and discussed its
main properties. Consider a special class of problems with bounded variables in the form ofmin ( ) , . . ≤ ≤ , = 1,2, … , .

Particle swarm optimizers are optimization algorithms which are inspired of the behaviors
of social models like bird flocking or fish schooling. It is introduced by Kennedy and
Eberhart [31] as an optimization method for continuous nonlinear functions. Later, it has
been applied to wide range of problems due to its simple concepts and easy implementation.

PSO is a stochastic and population-based optimization technique where individuals,
referred to as particles are grouped into a swarm. Each particle has a position and velocity
vector. Particles can initially be positioned randomly or to predetermined locations. The
position of a particle is a candidate solution to the optimization problem. In a PSO system,
each particle is moved through the multi-dimensional search space, adjusting its position in
search space according to its own experience and that of neighboring particles. A particle
therefore makes use of its neighbors to position itself toward an optimal solution. The effect
is that particles move toward a minimum, while still searching a wide area around the best
solution. The performance of each particle (i.e. the ‘‘closeness’’ of a particle to the global
optimum) is measured using a predefined fitness function which encapsulates the
characteristics of the optimization problem.Each particle in the swarm maintains the current
position, current velocity and the personal best position. The personal best position associated
with a particle i is the best position that the particle has visited, i.e. a position that yielded the
highest fitness value for that particle. If f denotes the objective function then the personal best
of a particle at a time step,t is updated as follows:( + 1) = ( ) , ( ( + 1)) ≥ ( ( ))( + 1) , ( ( + 1)) < ( ( )) (4)

Two main approaches to PSO exist, namely lbest and gbest, where the difference is in the
neighborhood topology used to exchange experience among particles. For the gbest model,
the best particle is determined from the entire swarm. If the position of the best particle is
denoted by the vector , then( ) ∈ { , ,⋯ , } = ( ) , ( ) ,⋯ , ( ( )) (5)

wheres is the total number of particles in the swarm. For the lbest model, a swarm is
divided into overlapping neighborhoods of particles. For each neighborhood, , a best
particle is determined with position . This best particle is referred to as the neighborhood
best particle defined as= { ( ), ( ),⋯ , ( ), ( ), ( ),⋯ , ( ), ( )} (6)( + 1) ∈ | ( + 1) = { ( )} ∀ ∈
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wherej stands for the number of neighborhood in the entire swarm. Neighborhoods are
usually determined using particle indices [32], although topological neighborhoods have also
been used [33]. The gbest PSO is a special case of lbest while l=s, that is, the neighborhood
is the entire swarm. In the gbest PSO algorithm, the velocity, vi and the position,xi of a
particle in the swarm are updated at the end of each iteration as follows:( + 1) = ( ) + [ ( ) − ( )] + [ ( ) − ( )] (7a)( + 1) = ( ) + ( + 1) (7b)

wherer1 andr2 are uniformly distributed random numbers [31], c1 andc2are the learning
factors (weights)that controls the personal and global best respectively. Therefore, the second
and the third terms in the right site ofequation (7a) show personal and global
(social)influences respectively. For the lbest version of PSO, ( )is replaced by, i.e. the
corresponding neighborhood best particle.The PSO algorithm performs repeated applications
of the updated equations above until a specified number of iterations have been exceeded or
until velocity updates are close to zero. Figure 4 shows the original canonical PSO algorithm.

6. Improved PSO algorithms

Since the PSO method introduced by Kennedy and Eberhart [31], many techniques were
proposed to refine and/or complement the standard elementary structure of the PSO
algorithm, namely regarding its tuning parameters. A number of modifications to PSO have
been introduced in the literature. The first modification was done by Shi and Eberhart [34].
They proposed a constant inertia weight,wwhich controls how much a particle tends to follow
its direction as compared to the memorized personal best position (pbest), ( ) and the global
best position (gbest), ( ). This version is referred to as PSO with constant inertia or PSO-CI.
Hence, in PSO-CI, velocity update is given as( + 1) = ( ) + [ ( ) − ( )] + [ ( ) − ( )] (8)

where the values ofr1 andr2 are realized component-wise.Shi and Eberhart [35] also
proposed a linearly varying inertia weight during the searching process. The inertia weight is
linearly reduced during the search. This entails a more globally search during the initial
stages and a more locally search during the final stages. This version is referred to as PSO
with linear inertia or PSO-LI. Also, a linearly varying scaling factors, (c1, c2) of PSOduring
the search has been proposed. These factors are linearly reduced during the search. This
version is referred to as PSO with linear acceleration weights or PSO-LA.Clerc and Kennedy
[36] introduced another interesting modification to PSO in the form of a constriction
coefficient K, which controls all the three components in velocity update rule (7a). This has
an effect of reducing the velocity as the search progresses. In this modification, the velocity
update is given as( + 1) = ( ( ) + [ ( ) − ( )] + [ ( ) − ( )]) (9)

whereviis the velocity vector of ith person of population in time,t and K is given as= 2/ 2 − − − 4 , = + > 4 (10)

This version is referred to as PSO with constriction or CPSO. The structure of CPSO
algorithm is similar to the structure of PSO algorithm (Figure 4) and the only difference is the
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updating rule of velocity vector which is given in the Equation (9).Da and Xiurun [37] also
modified PSO by introducing a temperature like control parameter as in the simulated
annealing (SA) algorithm. This version of PSO probabilistically select the overall best, ( ),
in the updating of ( + 1)for each i. Unlike SA, the temperature increases from a low to a
high value. This ascertains that PSO randomizes ( )in population for the low temperature.
At the high temperature, ( )is selected deterministically as in the original PSO.

Figure 4. The standard elementary algorithm of PSO

7. Implementation of PSO algorithms

Four modifications of PSOused to compare the ability of these algorithms on solving the
problem and choose the best model which best fit the data.In fact, the choice of swarm size
depends on the size of observed data and the number of parameters. However in practice it is
a common sense to fix its value 100, therefore in this study, in all PSO algorithms, the swarm
size is fixed to 100. and the iteration process was continued until the total error fall below a
specific value.For the boundaries of PSO parameters namely, weights and scaling factors are
given as [wmax, wmin]=[1.2, 0.1] and[c1,c2] = [1.4, 0.4] respectively. All PSO algorithms have
been tested using MATLAB7.8 on Intel Core2 Duo CPU 2 GHz with 2 GHz of RAM and
machine precision is2.22E-16. The fitness with CPU time for all models with algorithmsis
reported in Table 4.
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Table 4. Comparison of CPU time, number of iterations and fitness of three models with PSO
algorithms

Model-1 Model-2 Model-3

fitness CPU iter fitness CPU iter fitness CPU iter

PSO 783.6821 0.525478 40 663.9724 0.968827 40 663.8156 0.245 70
PSO-LI 783.6798 0.388604 30 664.8387 1.185111 40 670.1749 0.59797 200
PSO-LA 788.6813 0.666018 30 1033.4795 0.707959 30 693.0513 0.63632 200
PSO-CI 783.6951 0.319481 23 676.4538 0.593899 24 672.2121 0.62314 200

Results show that PSO-CIscheme is almost better than the other three modifications of
PSO algorithm in CPU time as well as the number of iterations. The minimum fitness value is
obtainedby PSO method after70 iterations for Model-3. On the other hand, according to only
fitness value,thestandard PSO algorithm is better than the others for these models.In Table 5,
computed parameters for all modelswith algorithms are reported. The comparison of
predicted and measured data for all models is given in Figure5. From the Figure 5b and
Figure 5c, Model-2 and Model-3 shownearly similar presentation within the proposed
models.

Table 5. Parameters of fitting three models with PSO algorithm

Model-1 Model-2 Model-3

a1 a2 a1 a2 a3 a1 a2 a3 a4 a5 a6

PSO 106.5823 0.215205 88.0899 0.2019 0.1235 96.8403 9.9063 1.3515 -0.2175 -0.0010 -0.0062

PSO-LI 106.3793 0.215912 86.6807 0.1943 0.1373 119.3423 5.2044 1.0719 -0.0538 -0.0107 0.0608

PSO-LA 119.0149 0.173308 30.4111 0.4694 0.2054 117.3537 5.4819 1.0563 -0.0641 -0.0103 0.0618

PSO-CI 105.9853 0.217857 76.7284 0.2107 0.1732 116.3859 6.3021 0.9825 -0.0625 -0.0169 0.0369

8. Model validation

Model validation is possibly the most important step in model building sequence. There
are many tools for model validation, but the primary tool for most process modeling
applications is graphical residual analysis. Different types of plots of the residuals from a
fitted model provide information on the adequacy of different aspects of the model.
Numerical methods for model validation, such as the R-square measure are also useful but
usually to a lesser degree than graphical methods. Graphical methods readily illustrate a
broad range of complex aspects of the relationship between the model and the data.
Numerical methods for model validation tend to be narrowly focused on a particular aspect of
the relationship between the model and the data and often try to compress that information
into a single descriptive number or test result. Numerical methods do play an important role
as confirmatory methods for graphical techniques. There are also a few modeling situations in
which graphical methods cannot easily be used. In these cases, numerical methods provide a
fallback position for model validation. One common situation when numerical validation
methods take precedence over graphical methods is when the number of parameters being
estimated is relatively close to the size of the data set. In this situation residual plots are often
difficult to interpret due to constraints on the residuals imposed by the estimation of the
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unknown parameters. One area in which this typically happens is in optimization applications
using designed experiments[38].

Figure 5. The fitness of the models, a) Model-1, b) Model-2, c) Model-3
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Goodness of fit of a model describes how well it fits a set of observations. Measures of
goodness of fit typically summarize the discrepancy between observed values and the values
expected under the model in question. Before the comparison of the developed models, brief
information of basic formulas of error measuresgiven.Some goodnessoffit measures for
parametric models are following [39,40]:

 Sum of squares of error (SSE)
 R-square
 Degrees of freedom adjusted R-square
 Chi-square
 Reduced Chi-square
 Weighting methods

Sum of Squares of Error

This measure measures the total deviation of the response values from the fit to the
response values. It is also called the summed square of residuals and is usually labeled as
SSE and defined as= ∑ ( − ) (11)

whereyi and denote measured andestimated values respectively. In this measure, a value
closer to zero indicates that the model has a smaller random error component and that the fit
will be more useful for prediction.

R-Square

This statistic measures how successful the fit is in explaining the variation of the data. Put
another way, R-square is the square of the correlation between the measured and predicted
values. It is also called the square of the multiple correlation coefficients and the coefficient
of multiple determinations. R-square is defined as the ratio of the sum of squares of the
regression (SSR) and the total sum of squares (SST). SSR is defined as= ∑ ( − ) (12)

SST is also called the sum of squares about the mean, and is defined as= ∑ ( − ) (13)

where, SST = SSR + SSE. Given the last two definitions for SSR and SST, R-square is
expressed as:− = = 1 − (14)

R-square can take on any value between 0 and 1, with a value closer to 1 indicating that a
greater proportion of variance is accounted for by the model. When the number of
coefficients in model is increased, the R-square increases although the fit may not improve in
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a practical sense. To avoid this situation, the degrees of freedom adjusted R-square statistic
which described below is needed.

Degrees of freedom adjusted R-Square

This measure uses the R-square measure defined above and adjusts it based on the residual
degrees of freedom. The residual degrees of freedom is defined as the number of response
values n minus the number of fitted coefficients m estimated from the response values.= −
where,v indicates the number of independent pieces of information involving the n data
points that are required to calculate the sum of squares.

Chi-square

One way in which goodness of fit of a model can be measured, in the case where the
variance of the measurement error is known, is to construct a weighted sum of squared errors:= ∑ ( )

(15)

whereσ2 is the known variance of the observation, O and E stand for observed and
estimated data respectively.

ReducedChi-square

The reduced Chi-squared measure is simply the Chi-square divided by the number of
degrees of freedom [38, 39, 40]:= = ∑ ( )

(16)

whereν is the number of degrees of freedom, usually given by N − n − 1, where N is the
number of observations, and n is the number of fitted parameters, assuming that the mean
value is an additional fitted parameter. The advantage of the reduced Chi-square is that it
already normalizes for the number of data points and model complexity.As a rule of thumb, a
large indicates a poor model fit. However < 1 indicates that the model is over-
fitting the data. A > 1 indicates that the fit has not fully captured the data. In principle,
a value of = 1 indicates that the extent of the match between observations and estimates
are in accord with the error variance.

Weighting methods

Nonlinear regression is commonly done without weighting. If there is a similar trend
between experimental and estimation, we can weight points differentially.There are two
relative weighting methods:

 weighting by 1/y2

 weighting by 1/y
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Weighting by1/y2

This method minimizes the sum-of-squares of the relative distances of the data from the
curve. The method is appropriate when we expect the average distance of the points from the
curve to be higher when y is higher, but the relative distance (distance divided by y) to be a
constant. In this common situation, minimizing the sum-of-squares is inappropriate because
points with high y values will have a large influence on the sum-of-squares value while points
with smaller y values will have little influence. Minimizing the sum of the square of the
relative distances restores equal weighting to all points.

Weighting by 1/y

Weighting by 1/yis a compromise between minimizing the actual distance squared and
minimizing the relative distance squared. The selection of the weighting methods in general
depends on the distribution of data.

Now by applying above measures for error evaluation the results summarized in Table
6.According to the Table 6, results show that the Model-3 is somewhat better than the other
two models based on the above fit measures for nonlinear models.

Table 6. Comparison of fit measures for three proposed models

Measure Model-1 Model-2 Model-3

SSE 623215.6868 471281.9600 415501.2786

R-square 0.2348 0.4213 0.4898

R-squarered 0.000725 0.001304 0.001535

248.6965 188.0668 165.8073207

0.7699 0.5841 0.519772165

Weighting by 1/y2 19.0937 15.6308 13.009615

Weighting by 1/y 3167.3047 2511.0563 2148.49751

9. Comparison of the models

The accuracy of the proposed models, namely (1) to (3) without uncertainties in predicting
Vs is compared with correlations presented previously by Hasancebi and Ulusay [17],
Dikmen [19], Jamiolkowskiet al. [24] andAkin et al. [20] (cf. Table 1). The statistical
comparison is performed for all the 326 cases initially used for the model development.
Figure6 illustrates the scattering of predicted versus observed Vs values.The results obtained
from the Figure6 shows that Model-2 is virtually same as Model-3. These two models
represent the measured data better.Figure7,8 and 9 shows the plots of fitness function that is
optimized by PSO algorithms for Model-1, 2 and 3 (horizontal axis shows the iterations of
algorithm). (a) illustrates plot of standard PSO algorithm, (b) shows plot of PSO-LI
algorithm, (c) shows plot of PSO-CI algorithm and (d) shows plot of PSO-LA algorithm)
respectively.
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Figure 6. Comparison of measured versus predicted VS by different methods, a) Hasancebi and Ulusay
(2006), b) Dikmen (2009), c) Jamiolkowski et al. (1988), d) Akin et al. (2011), e) Model-1, f) Model-
2 and g) Model-3

Figure 7. Plots of fitness function optimized by PSO algorithms for Model-1, a) PSO, b) PSO-LI, c)
PSO-CI, d) PSO-LA

a b

c d
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Figure 8. Plots of fitness function optimized by PSO algorithms for Model-2, a) PSO, b) PSO-LI, c)
PSO-CI, d) PSO-LA

Figure 9. Plots of fitness function optimized by PSO algorithms for Model-3, a) PSO, b) PSO-LI, c)
PSO-CI, d) PSO-LA

10. Discussion and Conclusions

In this paper, an attempt is made to deploy a system identification technique to develop a
comparison over shear wave velocity. Common structure of empirical correlations, in the
literature, is represented by Model-1 and Model-2, and a new model including polynomial
correlation of NSPT and Z (Model -3) is primarily investigated by using least square
regression technique and then, various schemes of PSO technique is used to optimize the
model parameters. Particle swarm optimization method is utilized for evaluation of the

a

a b

c d

b

c d
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coefficient of each parameter independently in the previous correlation. This is a major step
forward in comparison with previous approaches that just consider the regression analysis. A
new model is introduced to express the polynomial correlation content consideration of a
database of case histories consisting of 326 dataset from a site in Adapazarı, Turkey.

Statistical comparison of the models shows that the accuracy of Model-3 is particular and
nearly same as Model-2. However, in particular the aforementioned parameters, the new
Model-3 performs somewhat better and based on this approach,it is proposed to better
correlation. The most optimum values for each coefficient of each model was presented and
fed into the model for prediction of VS.

Results obtained from this study and previous researches reveal that empirical correlations
derived from a local dataset should not implemented for different sites with significantly
varying features. Therefore, it is strongly emphasis that these proposed relationships should
be used with caution in geotechnical engineering and should be checked against measured VS.
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